IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v186y2020i2d10.1007_s10957-020-01706-w.html
   My bibliography  Save this article

On Approximate Stationary Points of the Regularized Mathematical Program with Complementarity Constraints

Author

Listed:
  • Jean-Pierre Dussault

    (Université de Sherbrooke)

  • Mounir Haddou

    (Univ Rennes, INSA Rennes, CNRS, IRMAR - UMR 6625)

  • Abdeslam Kadrani

    (INSEA, Laboratoire SI2M Rabat-Instituts)

  • Tangi Migot

    (University of Guelph)

Abstract

We discuss the convergence of regularization methods for mathematical programs with complementarity constraints with approximate sequence of stationary points. It is now well accepted in the literature that, under some tailored constraint qualification, the genuine necessary optimality condition for this problem is the M-stationarity condition. It has been pointed out, (Kanzow and Schwartz in Math Oper Res 40(2):253–275. 2015), that relaxation methods with approximate stationary points fail to ensure convergence to M-stationary points. We define a new strong approximate stationarity concept, and we prove that a sequence of strong approximate stationary points always converges to an M-stationary solution. We also prove under weak assumptions the existence of strong approximate stationary points in the neighborhood of an M-stationary solution.

Suggested Citation

  • Jean-Pierre Dussault & Mounir Haddou & Abdeslam Kadrani & Tangi Migot, 2020. "On Approximate Stationary Points of the Regularized Mathematical Program with Complementarity Constraints," Journal of Optimization Theory and Applications, Springer, vol. 186(2), pages 504-522, August.
  • Handle: RePEc:spr:joptap:v:186:y:2020:i:2:d:10.1007_s10957-020-01706-w
    DOI: 10.1007/s10957-020-01706-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-020-01706-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-020-01706-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. V. Outrata, 1999. "Optimality Conditions for a Class of Mathematical Programs with Equilibrium Constraints," Mathematics of Operations Research, INFORMS, vol. 24(3), pages 627-644, August.
    2. Lei Guo & Gui-Hua Lin & Jane J. Ye, 2015. "Solving Mathematical Programs with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 166(1), pages 234-256, July.
    3. Holger Scheel & Stefan Scholtes, 2000. "Mathematical Programs with Complementarity Constraints: Stationarity, Optimality, and Sensitivity," Mathematics of Operations Research, INFORMS, vol. 25(1), pages 1-22, February.
    4. J. J. Ye & X. Y. Ye, 1997. "Necessary Optimality Conditions for Optimization Problems with Variational Inequality Constraints," Mathematics of Operations Research, INFORMS, vol. 22(4), pages 977-997, November.
    5. Michael L. Flegel & Christian Kanzow, 2006. "A direct proof for M-stationarity under MPEC-GCQ for mathematical programs with equilibrium constraints," Springer Optimization and Its Applications, in: Stephan Dempe & Vyacheslav Kalashnikov (ed.), Optimization with Multivalued Mappings, pages 111-122, Springer.
    6. M.L. Flegel & C. Kanzow, 2005. "Abadie-Type Constraint Qualification for Mathematical Programs with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 124(3), pages 595-614, March.
    7. Christian Kanzow & Alexandra Schwartz, 2015. "The Price of Inexactness: Convergence Properties of Relaxation Methods for Mathematical Programs with Complementarity Constraints Revisited," Mathematics of Operations Research, INFORMS, vol. 40(2), pages 253-275, February.
    8. Gui-Hua Lin & Masao Fukushima, 2005. "A Modified Relaxation Scheme for Mathematical Programs with Complementarity Constraints," Annals of Operations Research, Springer, vol. 133(1), pages 63-84, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Kanzow & Alexandra Schwartz, 2015. "The Price of Inexactness: Convergence Properties of Relaxation Methods for Mathematical Programs with Complementarity Constraints Revisited," Mathematics of Operations Research, INFORMS, vol. 40(2), pages 253-275, February.
    2. Christian Kanzow & Alexandra Schwartz, 2014. "Convergence properties of the inexact Lin-Fukushima relaxation method for mathematical programs with complementarity constraints," Computational Optimization and Applications, Springer, vol. 59(1), pages 249-262, October.
    3. Nguyen Huy Chieu & Gue Myung Lee, 2013. "A Relaxed Constant Positive Linear Dependence Constraint Qualification for Mathematical Programs with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 158(1), pages 11-32, July.
    4. Na Xu & Xide Zhu & Li-Ping Pang & Jian Lv, 2018. "Improved Convergence Properties of the Relaxation Schemes of Kadrani et al. and Kanzow and Schwartz for MPEC," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(01), pages 1-20, February.
    5. Giandomenico Mastroeni & Letizia Pellegrini & Alberto Peretti, 2021. "Some numerical aspects on a method for solving linear problems with complementarity constraints," Working Papers 16/2021, University of Verona, Department of Economics.
    6. Lei Guo & Gui-Hua Lin, 2013. "Notes on Some Constraint Qualifications for Mathematical Programs with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 156(3), pages 600-616, March.
    7. Suhong Jiang & Jin Zhang & Caihua Chen & Guihua Lin, 2018. "Smoothing partial exact penalty splitting method for mathematical programs with equilibrium constraints," Journal of Global Optimization, Springer, vol. 70(1), pages 223-236, January.
    8. Lei Guo & Gui-Hua Lin & Jane J. Ye, 2013. "Second-Order Optimality Conditions for Mathematical Programs with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 158(1), pages 33-64, July.
    9. Jane J. Ye & Jin Zhang, 2014. "Enhanced Karush–Kuhn–Tucker Conditions for Mathematical Programs with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 163(3), pages 777-794, December.
    10. Gui-Hua Lin & Mei-Ju Luo & Jin Zhang, 2016. "Smoothing and SAA method for stochastic programming problems with non-smooth objective and constraints," Journal of Global Optimization, Springer, vol. 66(3), pages 487-510, November.
    11. Lei Guo & Gui-Hua Lin & Jane J. Ye, 2015. "Solving Mathematical Programs with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 166(1), pages 234-256, July.
    12. Winterfeld, Anton, 2008. "Application of general semi-infinite programming to lapidary cutting problems," European Journal of Operational Research, Elsevier, vol. 191(3), pages 838-854, December.
    13. Nguyen Huy Chieu & Gue Myung Lee, 2014. "Constraint Qualifications for Mathematical Programs with Equilibrium Constraints and their Local Preservation Property," Journal of Optimization Theory and Applications, Springer, vol. 163(3), pages 755-776, December.
    14. Martin Branda & Max Bucher & Michal Červinka & Alexandra Schwartz, 2018. "Convergence of a Scholtes-type regularization method for cardinality-constrained optimization problems with an application in sparse robust portfolio optimization," Computational Optimization and Applications, Springer, vol. 70(2), pages 503-530, June.
    15. Acuna, Jorge A. & Zayas-Castro, Jose L. & Feijoo, Felipe, 2022. "A bilevel Nash-in-Nash model for hospital mergers: A key to affordable care," Socio-Economic Planning Sciences, Elsevier, vol. 83(C).
    16. Boris S. Mordukhovich & Nguyen Mau Nam, 2005. "Variational Stability and Marginal Functions via Generalized Differentiation," Mathematics of Operations Research, INFORMS, vol. 30(4), pages 800-816, November.
    17. H. Z. Luo & X. L. Sun & Y. F. Xu, 2010. "Convergence Properties of Modified and Partially-Augmented Lagrangian Methods for Mathematical Programs with Complementarity Constraints," Journal of Optimization Theory and Applications, Springer, vol. 145(3), pages 489-506, June.
    18. Hoai An Thi & Thi Minh Tam Nguyen & Tao Pham Dinh, 2023. "On solving difference of convex functions programs with linear complementarity constraints," Computational Optimization and Applications, Springer, vol. 86(1), pages 163-197, September.
    19. Meng Xu & Guangmin Wang & Susan Grant-Muller & Ziyou Gao, 2017. "Joint road toll pricing and capacity development in discrete transport network design problem," Transportation, Springer, vol. 44(4), pages 731-752, July.
    20. Xide Zhu & Peijun Guo, 2017. "Approaches to four types of bilevel programming problems with nonconvex nonsmooth lower level programs and their applications to newsvendor problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(2), pages 255-275, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:186:y:2020:i:2:d:10.1007_s10957-020-01706-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.