IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v63y2015i2p253-279.html
   My bibliography  Save this article

First order necessary optimality conditions for mathematical programs with second-order cone complementarity constraints

Author

Listed:
  • Yi Zhang
  • Jia Wu
  • Liwei Zhang

Abstract

This paper is to develop first order necessary optimality conditions for a mathematical program with second-order cone complementarity constraints (MPSCC) which includes the mathematical program with (vector) complementarity constraints (MPCC) as a special case. Like the case of MPCC, Robinson’s constraint qualification fails at every feasible point of MPSCC if we treat the MPSCC as an ordinary optimization problem. Using the formulas of regular and limiting coderivatives and generalized Clarke’s Jacobian of the projection operator onto second-order cones from the literature, we present the S-, M-, C- and A-stationary conditions for a MPSCC problem. Moreover, several constraint qualifications including MPSCC-Abadie CQ, MPSCC-LICQ, MPSCC-MFCQ and MPSCC-GMFCQ are proposed, under which a local minimizer of MPSCC is shown to be a S-, M-, C- or A-stationary point. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • Yi Zhang & Jia Wu & Liwei Zhang, 2015. "First order necessary optimality conditions for mathematical programs with second-order cone complementarity constraints," Journal of Global Optimization, Springer, vol. 63(2), pages 253-279, October.
  • Handle: RePEc:spr:jglopt:v:63:y:2015:i:2:p:253-279
    DOI: 10.1007/s10898-015-0295-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-015-0295-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-015-0295-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Holger Scheel & Stefan Scholtes, 2000. "Mathematical Programs with Complementarity Constraints: Stationarity, Optimality, and Sensitivity," Mathematics of Operations Research, INFORMS, vol. 25(1), pages 1-22, February.
    2. M.L. Flegel & C. Kanzow, 2005. "Abadie-Type Constraint Qualification for Mathematical Programs with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 124(3), pages 595-614, March.
    3. Jia Wu & Liwei Zhang & Yi Zhang, 2013. "A smoothing Newton method for mathematical programs governed by second-order cone constrained generalized equations," Journal of Global Optimization, Springer, vol. 55(2), pages 359-385, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. April Sagan & Xin Shen & John E. Mitchell, 2020. "Two Relaxation Methods for Rank Minimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 186(3), pages 806-825, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nguyen Huy Chieu & Gue Myung Lee, 2014. "Constraint Qualifications for Mathematical Programs with Equilibrium Constraints and their Local Preservation Property," Journal of Optimization Theory and Applications, Springer, vol. 163(3), pages 755-776, December.
    2. Jane J. Ye & Jin Zhang, 2014. "Enhanced Karush–Kuhn–Tucker Conditions for Mathematical Programs with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 163(3), pages 777-794, December.
    3. Christian Kanzow & Alexandra Schwartz, 2014. "Convergence properties of the inexact Lin-Fukushima relaxation method for mathematical programs with complementarity constraints," Computational Optimization and Applications, Springer, vol. 59(1), pages 249-262, October.
    4. Christian Kanzow & Alexandra Schwartz, 2015. "The Price of Inexactness: Convergence Properties of Relaxation Methods for Mathematical Programs with Complementarity Constraints Revisited," Mathematics of Operations Research, INFORMS, vol. 40(2), pages 253-275, February.
    5. Jean-Pierre Dussault & Mounir Haddou & Abdeslam Kadrani & Tangi Migot, 2020. "On Approximate Stationary Points of the Regularized Mathematical Program with Complementarity Constraints," Journal of Optimization Theory and Applications, Springer, vol. 186(2), pages 504-522, August.
    6. Xide Zhu & Jin Zhang & Jinchuan Zhou & Xinmin Yang, 2019. "Mathematical Programs with Second-Order Cone Complementarity Constraints: Strong Stationarity and Approximation Method," Journal of Optimization Theory and Applications, Springer, vol. 181(2), pages 521-540, May.
    7. Gerd Wachsmuth, 2015. "Mathematical Programs with Complementarity Constraints in Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 480-507, August.
    8. Nguyen Huy Chieu & Gue Myung Lee, 2013. "A Relaxed Constant Positive Linear Dependence Constraint Qualification for Mathematical Programs with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 158(1), pages 11-32, July.
    9. Balendu Bhooshan Upadhyay & Arnav Ghosh, 2023. "On Constraint Qualifications for Mathematical Programming Problems with Vanishing Constraints on Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 199(1), pages 1-35, October.
    10. Zhang, Fang & Lu, Jian & Hu, Xiaojian & Meng, Qiang, 2023. "Integrated deployment of dedicated lane and roadside unit considering uncertain road capacity under the mixed-autonomy traffic environment," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    11. Andreas Ehrenmann & Karsten Neuhoff, 2009. "A Comparison of Electricity Market Designs in Networks," Operations Research, INFORMS, vol. 57(2), pages 274-286, April.
    12. Gui-Hua Lin & Mei-Ju Luo & Jin Zhang, 2016. "Smoothing and SAA method for stochastic programming problems with non-smooth objective and constraints," Journal of Global Optimization, Springer, vol. 66(3), pages 487-510, November.
    13. Lei Guo & Gui-Hua Lin & Jane J. Ye, 2015. "Solving Mathematical Programs with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 166(1), pages 234-256, July.
    14. Tao Tan & Yanyan Li & Xingsi Li, 2011. "A Smoothing Method for Zero–One Constrained Extremum Problems," Journal of Optimization Theory and Applications, Springer, vol. 150(1), pages 65-77, July.
    15. S. Dempe & S. Franke, 2016. "On the solution of convex bilevel optimization problems," Computational Optimization and Applications, Springer, vol. 63(3), pages 685-703, April.
    16. A. F. Izmailov & M. V. Solodov, 2002. "The Theory of 2-Regularity for Mappings with Lipschitzian Derivatives and its Applications to Optimality Conditions," Mathematics of Operations Research, INFORMS, vol. 27(3), pages 614-635, August.
    17. Filippo Pecci & Edo Abraham & Ivan Stoianov, 2017. "Penalty and relaxation methods for the optimal placement and operation of control valves in water supply networks," Computational Optimization and Applications, Springer, vol. 67(1), pages 201-223, May.
    18. Birbil, S.I. & Bouza, G. & Frenk, J.B.G. & Still, G.J., 2003. "Equilibrium Constrained Optimization Problems," ERIM Report Series Research in Management ERS-2003-085-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    19. A. Izmailov & M. Solodov, 2009. "Examples of dual behaviour of Newton-type methods on optimization problems with degenerate constraints," Computational Optimization and Applications, Springer, vol. 42(2), pages 231-264, March.
    20. Winterfeld, Anton, 2008. "Application of general semi-infinite programming to lapidary cutting problems," European Journal of Operational Research, Elsevier, vol. 191(3), pages 838-854, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:63:y:2015:i:2:p:253-279. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.