IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v165y2015i2d10.1007_s10957-014-0630-7.html
   My bibliography  Save this article

Tykhonov Well-Posedness for Quasi-Equilibrium Problems

Author

Listed:
  • M. Darabi

    (University of Isfahan)

  • J. Zafarani

    (Sheikhbahaee University and University of Isfahan)

Abstract

We consider an extension of the notion of Tykhonov well-posedness for perturbed vector quasi-equilibrium problems. We establish some necessary and sufficient conditions for verifying these well-posedness properties. As for applications of our results, the Tykhonov well-posedness of vector variational-like inequalities and vector optimization problems is established.

Suggested Citation

  • M. Darabi & J. Zafarani, 2015. "Tykhonov Well-Posedness for Quasi-Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 165(2), pages 458-479, May.
  • Handle: RePEc:spr:joptap:v:165:y:2015:i:2:d:10.1007_s10957-014-0630-7
    DOI: 10.1007/s10957-014-0630-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-014-0630-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-014-0630-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. T. Zolezzi, 2001. "Well-Posedness and Optimization under Perturbations," Annals of Operations Research, Springer, vol. 101(1), pages 351-361, January.
    2. Fang, Ya-Ping & Huang, Nan-Jing & Yao, Jen-Chih, 2010. "Well-posedness by perturbations of mixed variational inequalities in Banach spaces," European Journal of Operational Research, Elsevier, vol. 201(3), pages 682-692, March.
    3. G. Wang & X. X. Huang, 2012. "Levitin–Polyak Well-Posedness for Optimization Problems with Generalized Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 153(1), pages 27-41, April.
    4. L. Q. Anh & P. Q. Khanh, 2007. "On the Stability of the Solution Sets of General Multivalued Vector Quasiequilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 135(2), pages 271-284, November.
    5. Gábor Kassay, 2010. "On Equilibrium Problems," Springer Optimization and Its Applications, in: Altannar Chinchuluun & Panos M. Pardalos & Rentsen Enkhbat & Ider Tseveendorj (ed.), Optimization and Optimal Control, pages 55-83, Springer.
    6. G. P. Crespi & A. Guerraggio & M. Rocca, 2007. "Well Posedness in Vector Optimization Problems and Vector Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 132(1), pages 213-226, January.
    7. San-hua Wang & Nan-jing Huang & Donal O’Regan, 2013. "Well-posedness for generalized quasi-variational inclusion problems and for optimization problems with constraints," Journal of Global Optimization, Springer, vol. 55(1), pages 189-208, January.
    8. G. P. Crespi & I. Ginchev & M. Rocca, 2004. "Minty Variational Inequalities, Increase-Along-Rays Property and Optimization1," Journal of Optimization Theory and Applications, Springer, vol. 123(3), pages 479-496, December.
    9. G. P. Crespi & M. Papalia & M. Rocca, 2009. "Extended Well-Posedness of Quasiconvex Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 141(2), pages 285-297, May.
    10. M. Oveisiha & J. Zafarani, 2012. "Vector optimization problem and generalized convexity," Journal of Global Optimization, Springer, vol. 52(1), pages 29-43, January.
    11. L. C. Ceng & N. Hadjisavvas & S. Schaible & J. C. Yao, 2008. "Well-Posedness for Mixed Quasivariational-Like Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 139(1), pages 109-125, October.
    12. L. Q. Anh & P. Q. Khanh & D. T. M. Van, 2012. "Well-Posedness Under Relaxed Semicontinuity for Bilevel Equilibrium and Optimization Problems with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 153(1), pages 42-59, April.
    13. M. Balaj & L. J. Lin, 2013. "Existence Criteria for the Solutions of Two Types of Variational Relation Problems," Journal of Optimization Theory and Applications, Springer, vol. 156(2), pages 232-246, February.
    14. Junyi Fu & Sanhua Wang, 2013. "Generalized strong vector quasi-equilibrium problem with domination structure," Journal of Global Optimization, Springer, vol. 55(4), pages 839-847, April.
    15. M. Bianchi & R. Pini, 2005. "Coercivity Conditions for Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 124(1), pages 79-92, January.
    16. Jacqueline Morgan, 2005. "Approximations and Well-Posedness in Multicriteria Games," Annals of Operations Research, Springer, vol. 137(1), pages 257-268, July.
    17. R. P. Agarwal & M. Balaj & D. O’Regan, 2012. "A Unifying Approach to Variational Relation Problems," Journal of Optimization Theory and Applications, Springer, vol. 155(2), pages 417-429, November.
    18. M. Bianchi & G. Kassay & R. Pini, 2009. "Well-posedness for vector equilibrium problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 70(1), pages 171-182, August.
    19. S. Al-Homidan & Q. H. Ansari, 2010. "Generalized Minty Vector Variational-Like Inequalities and Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 144(1), pages 1-11, January.
    20. Laura J. Kettner & Sien Deng, 2012. "On Well-Posedness and Hausdorff Convergence of Solution Sets of Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 153(3), pages 619-632, June.
    21. Charalambos D. Aliprantis & Kim C. Border, 2006. "Infinite Dimensional Analysis," Springer Books, Springer, edition 0, number 978-3-540-29587-7, December.
    22. J. W. Peng & S. Y. Wu, 2011. "The Well-Posedness for Multiobjective Generalized Games," Journal of Optimization Theory and Applications, Springer, vol. 150(2), pages 416-423, August.
    23. E. Miglierina & E. Molho, 2003. "Well-posedness and convexity in vector optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 58(3), pages 375-385, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. L. Q. Anh & T. Q. Duy & D. V. Hien, 2020. "Well-posedness for the optimistic counterpart of uncertain vector optimization problems," Annals of Operations Research, Springer, vol. 295(2), pages 517-533, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. San-hua Wang & Nan-jing Huang & Donal O’Regan, 2013. "Well-posedness for generalized quasi-variational inclusion problems and for optimization problems with constraints," Journal of Global Optimization, Springer, vol. 55(1), pages 189-208, January.
    2. C. Lalitha & Prashanto Chatterjee, 2014. "Levitin–Polyak well-posedness for constrained quasiconvex vector optimization problems," Journal of Global Optimization, Springer, vol. 59(1), pages 191-205, May.
    3. Yi-bin Xiao & Nan-jing Huang, 2011. "Well-posedness for a Class of Variational–Hemivariational Inequalities with Perturbations," Journal of Optimization Theory and Applications, Springer, vol. 151(1), pages 33-51, October.
    4. L. Q. Anh & P. Q. Khanh & D. T. M. Van, 2012. "Well-Posedness Under Relaxed Semicontinuity for Bilevel Equilibrium and Optimization Problems with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 153(1), pages 42-59, April.
    5. Ren-you Zhong & Nan-jing Huang, 2010. "Stability Analysis for Minty Mixed Variational Inequality in Reflexive Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 147(3), pages 454-472, December.
    6. J. W. Chen & Y. J. Cho & S. A. Khan & Z. Wan & C. F. Wen, 2015. "The Levitin-Polyak well-posedness by perturbations for systems of general variational inclusion and disclusion problems," Indian Journal of Pure and Applied Mathematics, Springer, vol. 46(6), pages 901-920, December.
    7. Phan Khanh & Vo Long, 2014. "Invariant-point theorems and existence of solutions to optimization-related problems," Journal of Global Optimization, Springer, vol. 58(3), pages 545-564, March.
    8. Li, S.J. & Chen, C.R. & Li, X.B. & Teo, K.L., 2011. "Hölder continuity and upper estimates of solutions to vector quasiequilibrium problems," European Journal of Operational Research, Elsevier, vol. 210(2), pages 148-157, April.
    9. C. S. Lalitha & Prashanto Chatterjee, 2012. "Stability for Properly Quasiconvex Vector Optimization Problem," Journal of Optimization Theory and Applications, Springer, vol. 155(2), pages 492-506, November.
    10. Ya-Ping Fang & Rong Hu, 2007. "Estimates of approximate solutions and well-posedness for variational inequalities," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 65(2), pages 281-291, April.
    11. Jia-Wei Chen & Zhongping Wan & Yeol Cho, 2013. "Levitin–Polyak well-posedness by perturbations for systems of set-valued vector quasi-equilibrium problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(1), pages 33-64, February.
    12. Ravi P. Agarwal & Mircea Balaj & Donal O’Regan, 2018. "Intersection Theorems with Applications in Optimization," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 761-777, December.
    13. Onetti Alberto & Verma Sameer, 2008. "Licensing and Business Models," Economics and Quantitative Methods qf0806, Department of Economics, University of Insubria.
    14. Rocca Matteo & Papalia Melania, 2008. "Well-posedness in vector optimization and scalarization results," Economics and Quantitative Methods qf0807, Department of Economics, University of Insubria.
    15. Fang, Ya-Ping & Huang, Nan-Jing & Yao, Jen-Chih, 2010. "Well-posedness by perturbations of mixed variational inequalities in Banach spaces," European Journal of Operational Research, Elsevier, vol. 201(3), pages 682-692, March.
    16. Savin Treanţă, 2022. "Well-Posedness Results of Certain Variational Inequalities," Mathematics, MDPI, vol. 10(20), pages 1-15, October.
    17. Giovanni P. Crespi & Matteo Rocca & Carola Schrage, 2015. "Variational Inequalities Characterizing Weak Minimality in Set Optimization," Journal of Optimization Theory and Applications, Springer, vol. 166(3), pages 804-824, September.
    18. Giovanni P. Crespi & Mansi Dhingra & C. S. Lalitha, 2018. "Pointwise and global well-posedness in set optimization: a direct approach," Annals of Operations Research, Springer, vol. 269(1), pages 149-166, October.
    19. Mircea Balaj & Dan Florin Serac, 2023. "Generalized Equilibrium Problems," Mathematics, MDPI, vol. 11(9), pages 1-11, May.
    20. G. P. Crespi & M. Papalia & M. Rocca, 2009. "Extended Well-Posedness of Quasiconvex Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 141(2), pages 285-297, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:165:y:2015:i:2:d:10.1007_s10957-014-0630-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.