IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v201y2010i3p682-692.html
   My bibliography  Save this article

Well-posedness by perturbations of mixed variational inequalities in Banach spaces

Author

Listed:
  • Fang, Ya-Ping
  • Huang, Nan-Jing
  • Yao, Jen-Chih

Abstract

In this paper, we consider an extension of the notion of well-posedness by perturbations, introduced by Zolezzi for a minimization problem, to a mixed variational inequality problem in a Banach space. We establish some metric characterizations of the well-posedness by perturbations. We also show that under suitable conditions, the well-posedness by perturbations of a mixed variational inequality problem is equivalent to the well-posedness by perturbations of a corresponding inclusion problem and a corresponding fixed point problem. Also, we derive some conditions under which the well-posedness by perturbations of a mixed variational inequality is equivalent to the existence and uniqueness of its solution.

Suggested Citation

  • Fang, Ya-Ping & Huang, Nan-Jing & Yao, Jen-Chih, 2010. "Well-posedness by perturbations of mixed variational inequalities in Banach spaces," European Journal of Operational Research, Elsevier, vol. 201(3), pages 682-692, March.
  • Handle: RePEc:eee:ejores:v:201:y:2010:i:3:p:682-692
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(09)00232-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ya-Ping Fang & Rong Hu, 2007. "Estimates of approximate solutions and well-posedness for variational inequalities," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 65(2), pages 281-291, April.
    2. M. Margiocco & F. Patrone & L. Pusillo, 2002. "On the Tikhonov Well-Posedness of Concave Games and Cournot Oligopoly Games," Journal of Optimization Theory and Applications, Springer, vol. 112(2), pages 361-379, February.
    3. M. Margiocco & F. Patrone & L. Pusillo Chicco, 1999. "Metric Characterizations of Tikhonov Well-Posedness in Value," Journal of Optimization Theory and Applications, Springer, vol. 100(2), pages 377-387, February.
    4. B. Lemaire & C. Ould Ahmed Salem & J. P. Revalski, 2002. "Well-Posedness by Perturbations of Variational Problems," Journal of Optimization Theory and Applications, Springer, vol. 115(2), pages 345-368, November.
    5. M. B. Lignola, 2006. "Well-Posedness and L-Well-Posedness for Quasivariational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 128(1), pages 119-138, January.
    6. Jacqueline Morgan, 2005. "Approximations and Well-Posedness in Multicriteria Games," Annals of Operations Research, Springer, vol. 137(1), pages 257-268, July.
    7. X. X. Huang, 2001. "Extended and strongly extended well-posedness of set-valued optimization problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 53(1), pages 101-116, April.
    8. E. Miglierina & E. Molho, 2003. "Well-posedness and convexity in vector optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 58(3), pages 375-385, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yao, Yonghong & Cho, Yeol Je & Liou, Yeong-Cheng, 2011. "Algorithms of common solutions for variational inclusions, mixed equilibrium problems and fixed point problems," European Journal of Operational Research, Elsevier, vol. 212(2), pages 242-250, July.
    2. Ren-you Zhong & Nan-jing Huang, 2010. "Stability Analysis for Minty Mixed Variational Inequality in Reflexive Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 147(3), pages 454-472, December.
    3. M. Darabi & J. Zafarani, 2015. "Tykhonov Well-Posedness for Quasi-Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 165(2), pages 458-479, May.
    4. Mircea Sofonea & Yi-bin Xiao, 2021. "Well-Posedness of Minimization Problems in Contact Mechanics," Journal of Optimization Theory and Applications, Springer, vol. 188(3), pages 650-672, March.
    5. San-hua Wang & Nan-jing Huang & Donal O’Regan, 2013. "Well-posedness for generalized quasi-variational inclusion problems and for optimization problems with constraints," Journal of Global Optimization, Springer, vol. 55(1), pages 189-208, January.
    6. Yi-bin Xiao & Nan-jing Huang, 2011. "Well-posedness for a Class of Variational–Hemivariational Inequalities with Perturbations," Journal of Optimization Theory and Applications, Springer, vol. 151(1), pages 33-51, October.
    7. Yonghong Yao & Yeong-Cheng Liou & Shin Kang, 2010. "Minimization of equilibrium problems, variational inequality problems and fixed point problems," Journal of Global Optimization, Springer, vol. 48(4), pages 643-656, December.
    8. Jia-Wei Chen & Zhongping Wan & Yeol Cho, 2013. "Levitin–Polyak well-posedness by perturbations for systems of set-valued vector quasi-equilibrium problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(1), pages 33-64, February.
    9. Yi-bin Xiao & Xinmin Yang & Nan-jing Huang, 2015. "Some equivalence results for well-posedness of hemivariational inequalities," Journal of Global Optimization, Springer, vol. 61(4), pages 789-802, April.
    10. Savin Treanţă, 2022. "Well-Posedness Results of Certain Variational Inequalities," Mathematics, MDPI, vol. 10(20), pages 1-15, October.
    11. Vo Minh Tam & Nguyen Hung & Zhenhai Liu & Jen Chih Yao, 2022. "Levitin–Polyak Well-Posedness by Perturbations for the Split Hemivariational Inequality Problem on Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 195(2), pages 684-706, November.
    12. Mircea Sofonea & Yi-bin Xiao, 2019. "On the Well-Posedness Concept in the Sense of Tykhonov," Journal of Optimization Theory and Applications, Springer, vol. 183(1), pages 139-157, October.
    13. Li, S.J. & Chen, C.R. & Li, X.B. & Teo, K.L., 2011. "Hölder continuity and upper estimates of solutions to vector quasiequilibrium problems," European Journal of Operational Research, Elsevier, vol. 210(2), pages 148-157, April.
    14. J. W. Chen & Y. J. Cho & S. A. Khan & Z. Wan & C. F. Wen, 2015. "The Levitin-Polyak well-posedness by perturbations for systems of general variational inclusion and disclusion problems," Indian Journal of Pure and Applied Mathematics, Springer, vol. 46(6), pages 901-920, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi-bin Xiao & Nan-jing Huang, 2011. "Well-posedness for a Class of Variational–Hemivariational Inequalities with Perturbations," Journal of Optimization Theory and Applications, Springer, vol. 151(1), pages 33-51, October.
    2. San-hua Wang & Nan-jing Huang & Donal O’Regan, 2013. "Well-posedness for generalized quasi-variational inclusion problems and for optimization problems with constraints," Journal of Global Optimization, Springer, vol. 55(1), pages 189-208, January.
    3. Ya-Ping Fang & Rong Hu, 2007. "Estimates of approximate solutions and well-posedness for variational inequalities," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 65(2), pages 281-291, April.
    4. Savin Treanţă, 2021. "On Well-Posedness of Some Constrained Variational Problems," Mathematics, MDPI, vol. 9(19), pages 1-12, October.
    5. X. J. Long & J. W. Peng, 2013. "Generalized B-Well-Posedness for Set Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 157(3), pages 612-623, June.
    6. Rocca Matteo & Papalia Melania, 2008. "Well-posedness in vector optimization and scalarization results," Economics and Quantitative Methods qf0807, Department of Economics, University of Insubria.
    7. M. Darabi & J. Zafarani, 2015. "Tykhonov Well-Posedness for Quasi-Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 165(2), pages 458-479, May.
    8. Y. P. Fang & R. Hu & N. J. Huang, 2007. "Extended B-Well-Posedness and Property (H) for Set-Valued Vector Optimization with Convexity," Journal of Optimization Theory and Applications, Springer, vol. 135(3), pages 445-458, December.
    9. Elisa Mastrogiacomo & Matteo Rocca, 2021. "Set optimization of set-valued risk measures," Annals of Operations Research, Springer, vol. 296(1), pages 291-314, January.
    10. Francisco Facchinei & Christian Kanzow, 2010. "Generalized Nash Equilibrium Problems," Annals of Operations Research, Springer, vol. 175(1), pages 177-211, March.
    11. Onetti Alberto & Verma Sameer, 2008. "Licensing and Business Models," Economics and Quantitative Methods qf0806, Department of Economics, University of Insubria.
    12. J. W. Peng & S. Y. Wu, 2011. "The Well-Posedness for Multiobjective Generalized Games," Journal of Optimization Theory and Applications, Springer, vol. 150(2), pages 416-423, August.
    13. G. P. Crespi & M. Papalia & M. Rocca, 2009. "Extended Well-Posedness of Quasiconvex Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 141(2), pages 285-297, May.
    14. Miglierina Enrico & Molho Elena & Rocca Matteo, 2004. "Well-posedness and scalarization in vector optimization," Economics and Quantitative Methods qf0403, Department of Economics, University of Insubria.
    15. Ya-ping Fang & Nan-jing Huang, 2007. "Increasing-along-rays property, vector optimization and well-posedness," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 65(1), pages 99-114, February.
    16. G. Wang & X. X. Huang, 2012. "Levitin–Polyak Well-Posedness for Optimization Problems with Generalized Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 153(1), pages 27-41, April.
    17. M. Bianchi & G. Kassay & R. Pini, 2009. "Well-posedness for vector equilibrium problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 70(1), pages 171-182, August.
    18. L. Q. Anh & P. Q. Khanh & D. T. M. Van, 2012. "Well-Posedness Under Relaxed Semicontinuity for Bilevel Equilibrium and Optimization Problems with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 153(1), pages 42-59, April.
    19. G. De Marco & J. Morgan, 2010. "Kalai-Smorodinsky Bargaining Solution Equilibria," Journal of Optimization Theory and Applications, Springer, vol. 145(3), pages 429-449, June.
    20. Samir Adly & Maïtine Bergounioux & Mohamed Ait Mansour, 2010. "Optimal control of a quasi-variational obstacle problem," Journal of Global Optimization, Springer, vol. 47(3), pages 421-435, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:201:y:2010:i:3:p:682-692. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.