Pointwise and global well-posedness in set optimization: a direct approach
Author
Abstract
Suggested Citation
DOI: 10.1007/s10479-017-2709-7
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- G. P. Crespi & A. Guerraggio & M. Rocca, 2007. "Well Posedness in Vector Optimization Problems and Vector Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 132(1), pages 213-226, January.
- X. J. Long & J. W. Peng, 2013. "Generalized B-Well-Posedness for Set Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 157(3), pages 612-623, June.
- M. Durea, 2007. "Scalarization for pointwise well-posed vectorial problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 66(3), pages 409-418, December.
- Xian-Jun Long & Jian-Wen Peng & Zai-Yun Peng, 2015. "Scalarization and pointwise well-posedness for set optimization problems," Journal of Global Optimization, Springer, vol. 62(4), pages 763-773, August.
- X. X. Huang, 2001. "Extended and strongly extended well-posedness of set-valued optimization problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 53(1), pages 101-116, April.
- G. P. Crespi & M. Papalia & M. Rocca, 2009. "Extended Well-Posedness of Quasiconvex Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 141(2), pages 285-297, May.
- E. Miglierina & E. Molho & M. Rocca, 2005. "Well-Posedness and Scalarization in Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 126(2), pages 391-409, August.
- X. X. Huang, 2001. "Pointwise Well-Posedness of Perturbed Vector Optimization Problems in a Vector-Valued Variational Principle," Journal of Optimization Theory and Applications, Springer, vol. 108(3), pages 671-684, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Meenakshi Gupta & Manjari Srivastava, 2020. "Approximate Solutions and Levitin–Polyak Well-Posedness for Set Optimization Using Weak Efficiency," Journal of Optimization Theory and Applications, Springer, vol. 186(1), pages 191-208, July.
- Kuntal Som & Vellaichamy Vetrivel, 2022. "A Note on Pointwise Well-Posedness of Set-Valued Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 192(2), pages 628-647, February.
- Kuntal Som & V. Vetrivel, 2023. "Global well-posedness of set-valued optimization with application to uncertain problems," Journal of Global Optimization, Springer, vol. 85(2), pages 511-539, February.
- Lam Quoc Anh & Tran Quoc Duy & Dinh Vinh Hien & Daishi Kuroiwa & Narin Petrot, 2020. "Convergence of Solutions to Set Optimization Problems with the Set Less Order Relation," Journal of Optimization Theory and Applications, Springer, vol. 185(2), pages 416-432, May.
- Yu Han & Kai Zhang & Nan-jing Huang, 2020. "The stability and extended well-posedness of the solution sets for set optimization problems via the Painlevé–Kuratowski convergence," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(1), pages 175-196, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Meenakshi Gupta & Manjari Srivastava, 2019. "Well-posedness and scalarization in set optimization involving ordering cones with possibly empty interior," Journal of Global Optimization, Springer, vol. 73(2), pages 447-463, February.
- Rocca Matteo & Papalia Melania, 2008. "Well-posedness in vector optimization and scalarization results," Economics and Quantitative Methods qf0807, Department of Economics, University of Insubria.
- S. Khoshkhabar-amiranloo & E. Khorram, 2015. "Pointwise well-posedness and scalarization in set optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 82(2), pages 195-210, October.
- Onetti Alberto & Verma Sameer, 2008. "Licensing and Business Models," Economics and Quantitative Methods qf0806, Department of Economics, University of Insubria.
- X. J. Long & J. W. Peng, 2013. "Generalized B-Well-Posedness for Set Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 157(3), pages 612-623, June.
- Xian-Jun Long & Jian-Wen Peng & Zai-Yun Peng, 2015. "Scalarization and pointwise well-posedness for set optimization problems," Journal of Global Optimization, Springer, vol. 62(4), pages 763-773, August.
- Kuntal Som & V. Vetrivel, 2023. "Global well-posedness of set-valued optimization with application to uncertain problems," Journal of Global Optimization, Springer, vol. 85(2), pages 511-539, February.
- Giovanni Paolo Crespi & Andreas H. Hamel & Matteo Rocca & Carola Schrage, 2021. "Set Relations via Families of Scalar Functions and Approximate Solutions in Set Optimization," Mathematics of Operations Research, INFORMS, vol. 46(1), pages 361-381, February.
- Giovanni P. Crespi & Daishi Kuroiwa & Matteo Rocca, 2017. "Quasiconvexity of set-valued maps assures well-posedness of robust vector optimization," Annals of Operations Research, Springer, vol. 251(1), pages 89-104, April.
- Gang Xiao & Hong Xiao & Sanyang Liu, 2011. "Scalarization and pointwise well-posedness in vector optimization problems," Journal of Global Optimization, Springer, vol. 49(4), pages 561-574, April.
- Y. P. Fang & R. Hu & N. J. Huang, 2007. "Extended B-Well-Posedness and Property (H) for Set-Valued Vector Optimization with Convexity," Journal of Optimization Theory and Applications, Springer, vol. 135(3), pages 445-458, December.
- Kuntal Som & Vellaichamy Vetrivel, 2022. "A Note on Pointwise Well-Posedness of Set-Valued Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 192(2), pages 628-647, February.
- Elisa Mastrogiacomo & Matteo Rocca, 2021. "Set optimization of set-valued risk measures," Annals of Operations Research, Springer, vol. 296(1), pages 291-314, January.
- Yu Han & Kai Zhang & Nan-jing Huang, 2020. "The stability and extended well-posedness of the solution sets for set optimization problems via the Painlevé–Kuratowski convergence," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(1), pages 175-196, February.
- G. P. Crespi & M. Papalia & M. Rocca, 2009. "Extended Well-Posedness of Quasiconvex Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 141(2), pages 285-297, May.
- San-hua Wang & Nan-jing Huang & Donal O’Regan, 2013. "Well-posedness for generalized quasi-variational inclusion problems and for optimization problems with constraints," Journal of Global Optimization, Springer, vol. 55(1), pages 189-208, January.
- Li Zhu & Fu-quan Xia, 2012. "Scalarization method for Levitin–Polyak well-posedness of vectorial optimization problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 76(3), pages 361-375, December.
- M. Bianchi & G. Kassay & R. Pini, 2009. "Well-posedness for vector equilibrium problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 70(1), pages 171-182, August.
- C. S. Lalitha & Prashanto Chatterjee, 2012. "Stability for Properly Quasiconvex Vector Optimization Problem," Journal of Optimization Theory and Applications, Springer, vol. 155(2), pages 492-506, November.
- C. Lalitha & Prashanto Chatterjee, 2014. "Levitin–Polyak well-posedness for constrained quasiconvex vector optimization problems," Journal of Global Optimization, Springer, vol. 59(1), pages 191-205, May.
More about this item
Keywords
Well-posedness; Set optimization; l-minimal solution; Compactness; Upper continuity;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:269:y:2018:i:1:d:10.1007_s10479-017-2709-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.