IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v141y2009i2d10.1007_s10957-008-9494-z.html
   My bibliography  Save this article

Extended Well-Posedness of Quasiconvex Vector Optimization Problems

Author

Listed:
  • G. P. Crespi

    (Université de la Vallé d’Aoste)

  • M. Papalia

    (University of Insubria)

  • M. Rocca

    (University of Insubria)

Abstract

The notion of extended-well-posedness has been introduced by Zolezzi for scalar minimization problems and has been further generalized to vector minimization problems by Huang. In this paper, we study the extended well-posedness properties of vector minimization problems in which the objective function is C-quasiconvex. To achieve this task, we first study some stability properties of such problems.

Suggested Citation

  • G. P. Crespi & M. Papalia & M. Rocca, 2009. "Extended Well-Posedness of Quasiconvex Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 141(2), pages 285-297, May.
  • Handle: RePEc:spr:joptap:v:141:y:2009:i:2:d:10.1007_s10957-008-9494-z
    DOI: 10.1007/s10957-008-9494-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-008-9494-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-008-9494-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. G. P. Crespi & A. Guerraggio & M. Rocca, 2007. "Well Posedness in Vector Optimization Problems and Vector Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 132(1), pages 213-226, January.
    2. X. X. Huang, 2000. "Extended Well-Posedness Properties of Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 106(1), pages 165-182, July.
    3. X. X. Huang, 2001. "Extended and strongly extended well-posedness of set-valued optimization problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 53(1), pages 101-116, April.
    4. J. B. Hiriart-Urruty, 1979. "Tangent Cones, Generalized Gradients and Mathematical Programming in Banach Spaces," Mathematics of Operations Research, INFORMS, vol. 4(1), pages 79-97, February.
    5. E. Miglierina & E. Molho & M. Rocca, 2005. "Well-Posedness and Scalarization in Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 126(2), pages 391-409, August.
    6. E. Miglierina & E. Molho, 2003. "Well-posedness and convexity in vector optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 58(3), pages 375-385, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. C. S. Lalitha & Prashanto Chatterjee, 2012. "Stability for Properly Quasiconvex Vector Optimization Problem," Journal of Optimization Theory and Applications, Springer, vol. 155(2), pages 492-506, November.
    2. Meenakshi Gupta & Manjari Srivastava, 2020. "Approximate Solutions and Levitin–Polyak Well-Posedness for Set Optimization Using Weak Efficiency," Journal of Optimization Theory and Applications, Springer, vol. 186(1), pages 191-208, July.
    3. L. Q. Anh & T. Q. Duy & D. V. Hien, 2020. "Well-posedness for the optimistic counterpart of uncertain vector optimization problems," Annals of Operations Research, Springer, vol. 295(2), pages 517-533, December.
    4. César Gutiérrez & Enrico Miglierina & Elena Molho & Vicente Novo, 2016. "Convergence of Solutions of a Set Optimization Problem in the Image Space," Journal of Optimization Theory and Applications, Springer, vol. 170(2), pages 358-371, August.
    5. Giovanni P. Crespi & Daishi Kuroiwa & Matteo Rocca, 2017. "Quasiconvexity of set-valued maps assures well-posedness of robust vector optimization," Annals of Operations Research, Springer, vol. 251(1), pages 89-104, April.
    6. M. Darabi & J. Zafarani, 2015. "Tykhonov Well-Posedness for Quasi-Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 165(2), pages 458-479, May.
    7. C. S. Lalitha & Prashanto Chatterjee, 2012. "Stability and Scalarization of Weak Efficient, Efficient and Henig Proper Efficient Sets Using Generalized Quasiconvexities," Journal of Optimization Theory and Applications, Springer, vol. 155(3), pages 941-961, December.
    8. Yu Han & Kai Zhang & Nan-jing Huang, 2020. "The stability and extended well-posedness of the solution sets for set optimization problems via the Painlevé–Kuratowski convergence," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(1), pages 175-196, February.
    9. Giovanni P. Crespi & Mansi Dhingra & C. S. Lalitha, 2018. "Pointwise and global well-posedness in set optimization: a direct approach," Annals of Operations Research, Springer, vol. 269(1), pages 149-166, October.
    10. Meenakshi Gupta & Manjari Srivastava, 2019. "Well-posedness and scalarization in set optimization involving ordering cones with possibly empty interior," Journal of Global Optimization, Springer, vol. 73(2), pages 447-463, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rocca Matteo & Papalia Melania, 2008. "Well-posedness in vector optimization and scalarization results," Economics and Quantitative Methods qf0807, Department of Economics, University of Insubria.
    2. Onetti Alberto & Verma Sameer, 2008. "Licensing and Business Models," Economics and Quantitative Methods qf0806, Department of Economics, University of Insubria.
    3. X. J. Long & J. W. Peng, 2013. "Generalized B-Well-Posedness for Set Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 157(3), pages 612-623, June.
    4. Y. P. Fang & R. Hu & N. J. Huang, 2007. "Extended B-Well-Posedness and Property (H) for Set-Valued Vector Optimization with Convexity," Journal of Optimization Theory and Applications, Springer, vol. 135(3), pages 445-458, December.
    5. Meenakshi Gupta & Manjari Srivastava, 2019. "Well-posedness and scalarization in set optimization involving ordering cones with possibly empty interior," Journal of Global Optimization, Springer, vol. 73(2), pages 447-463, February.
    6. Miglierina Enrico & Molho Elena & Rocca Matteo, 2004. "Well-posedness and scalarization in vector optimization," Economics and Quantitative Methods qf0403, Department of Economics, University of Insubria.
    7. C. Lalitha & Prashanto Chatterjee, 2014. "Levitin–Polyak well-posedness for constrained quasiconvex vector optimization problems," Journal of Global Optimization, Springer, vol. 59(1), pages 191-205, May.
    8. Yi-bin Xiao & Nan-jing Huang, 2011. "Well-posedness for a Class of Variational–Hemivariational Inequalities with Perturbations," Journal of Optimization Theory and Applications, Springer, vol. 151(1), pages 33-51, October.
    9. Giovanni Paolo Crespi & Andreas H. Hamel & Matteo Rocca & Carola Schrage, 2021. "Set Relations via Families of Scalar Functions and Approximate Solutions in Set Optimization," Mathematics of Operations Research, INFORMS, vol. 46(1), pages 361-381, February.
    10. Giovanni P. Crespi & Mansi Dhingra & C. S. Lalitha, 2018. "Pointwise and global well-posedness in set optimization: a direct approach," Annals of Operations Research, Springer, vol. 269(1), pages 149-166, October.
    11. M. Bianchi & G. Kassay & R. Pini, 2009. "Well-posedness for vector equilibrium problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 70(1), pages 171-182, August.
    12. Ya-Ping Fang & Rong Hu, 2007. "Estimates of approximate solutions and well-posedness for variational inequalities," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 65(2), pages 281-291, April.
    13. S. Khoshkhabar-amiranloo & E. Khorram, 2015. "Pointwise well-posedness and scalarization in set optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 82(2), pages 195-210, October.
    14. Giovanni P. Crespi & Daishi Kuroiwa & Matteo Rocca, 2017. "Quasiconvexity of set-valued maps assures well-posedness of robust vector optimization," Annals of Operations Research, Springer, vol. 251(1), pages 89-104, April.
    15. M. Darabi & J. Zafarani, 2015. "Tykhonov Well-Posedness for Quasi-Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 165(2), pages 458-479, May.
    16. Gang Xiao & Hong Xiao & Sanyang Liu, 2011. "Scalarization and pointwise well-posedness in vector optimization problems," Journal of Global Optimization, Springer, vol. 49(4), pages 561-574, April.
    17. Xian-Jun Long & Jian-Wen Peng & Zai-Yun Peng, 2015. "Scalarization and pointwise well-posedness for set optimization problems," Journal of Global Optimization, Springer, vol. 62(4), pages 763-773, August.
    18. Ying Gao & Xin-Min Yang, 2019. "Properties of the nonlinear scalar functional and its applications to vector optimization problems," Journal of Global Optimization, Springer, vol. 73(4), pages 869-889, April.
    19. Elisa Mastrogiacomo & Matteo Rocca, 2021. "Set optimization of set-valued risk measures," Annals of Operations Research, Springer, vol. 296(1), pages 291-314, January.
    20. Fang, Ya-Ping & Huang, Nan-Jing & Yao, Jen-Chih, 2010. "Well-posedness by perturbations of mixed variational inequalities in Banach spaces," European Journal of Operational Research, Elsevier, vol. 201(3), pages 682-692, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:141:y:2009:i:2:d:10.1007_s10957-008-9494-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.