On Equilibrium Problems
In: Optimization and Optimal Control
Author
Abstract
Suggested Citation
DOI: 10.1007/978-0-387-89496-6_3
Download full text from publisher
To our knowledge, this item is not available for download. To find whether it is available, there are three options:1. Check below whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Adela Capătă, 2012. "Optimality Conditions for Extended Ky Fan Inequality with Cone and Affine Constraints and Their Applications," Journal of Optimization Theory and Applications, Springer, vol. 152(3), pages 661-674, March.
- Mircea Balaj & Dan Florin Serac, 2023. "Generalized Equilibrium Problems," Mathematics, MDPI, vol. 11(9), pages 1-11, May.
- M. Darabi & J. Zafarani, 2015. "Tykhonov Well-Posedness for Quasi-Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 165(2), pages 458-479, May.
- Boualem Alleche & Vicenţiu D. Rădulescu, 2016. "Solutions and Approximate Solutions of Quasi-Equilibrium Problems in Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 170(2), pages 629-649, August.
- Mohammad Alizadeh & Nicolas Hadjisavvas, 2012. "Local boundedness of monotone bifunctions," Journal of Global Optimization, Springer, vol. 53(2), pages 231-241, June.
- San-hua Wang & Nan-jing Huang & Donal O’Regan, 2013. "Well-posedness for generalized quasi-variational inclusion problems and for optimization problems with constraints," Journal of Global Optimization, Springer, vol. 55(1), pages 189-208, January.
- L. Q. Anh & T. Q. Duy & D. V. Hien, 2020. "Well-posedness for the optimistic counterpart of uncertain vector optimization problems," Annals of Operations Research, Springer, vol. 295(2), pages 517-533, December.
More about this item
Keywords
equilibrium problem; saddlepoint; variational inequality; intersection theorems; Ekeland’s variational principle; approximate solutions;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-0-387-89496-6_3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.