Levitin–Polyak well-posedness by perturbations for systems of set-valued vector quasi-equilibrium problems
Author
Abstract
Suggested Citation
DOI: 10.1007/s00186-012-0414-5
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zui Xu & D. Zhu & X. Huang, 2008. "Levitin–Polyak well-posedness in generalized vector variational inequality problem with functional constraints," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 67(3), pages 505-524, June.
- Jian-Wen Peng & Soon-Yi Wu & Yan Wang, 2012. "Levitin-Polyak well-posedness of generalized vector quasi-equilibrium problems with functional constraints," Journal of Global Optimization, Springer, vol. 52(4), pages 779-795, April.
- Fang, Ya-Ping & Huang, Nan-Jing & Yao, Jen-Chih, 2010. "Well-posedness by perturbations of mixed variational inequalities in Banach spaces," European Journal of Operational Research, Elsevier, vol. 201(3), pages 682-692, March.
- S. Li & M. Li, 2009. "Levitin–Polyak well-posedness of vector equilibrium problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 69(1), pages 125-140, March.
- N. J. Huang & J. Li & J. C. Yao, 2007. "Gap Functions and Existence of Solutions for a System of Vector Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 133(2), pages 201-212, May.
- G. Y. Chen & X. Q. Yang, 2002. "Characterizations of Variable Domination Structures via Nonlinear Scalarization," Journal of Optimization Theory and Applications, Springer, vol. 112(1), pages 97-110, January.
- L. C. Ceng & N. Hadjisavvas & S. Schaible & J. C. Yao, 2008. "Well-Posedness for Mixed Quasivariational-Like Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 139(1), pages 109-125, October.
- G. Y. Chen & C. J. Goh & X. Q. Yang, 1999. "Vector network equilibrium problems and nonlinear scalarization methods," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 49(2), pages 239-253, April.
- Q. H. Ansari & S. Schaible & J. C. Yao, 2000. "System of Vector Equilibrium Problems and Its Applications," Journal of Optimization Theory and Applications, Springer, vol. 107(3), pages 547-557, December.
- S. Al-Homidan & Q. H. Ansari & S. Schaible, 2007. "Existence of Solutions of Systems of Generalized Implicit Vector Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 134(3), pages 515-531, September.
- Jun-Yi Fu, 2005. "Vector Equilibrium Problems. Existence Theorems and Convexity of Solution Set," Journal of Global Optimization, Springer, vol. 31(1), pages 109-119, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Savin Treanţă, 2021. "On Well-Posedness of Some Constrained Variational Problems," Mathematics, MDPI, vol. 9(19), pages 1-12, October.
- Savin Treanţă, 2022. "Well-Posedness Results of Certain Variational Inequalities," Mathematics, MDPI, vol. 10(20), pages 1-15, October.
- J. W. Chen & Y. J. Cho & S. A. Khan & Z. Wan & C. F. Wen, 2015. "The Levitin-Polyak well-posedness by perturbations for systems of general variational inclusion and disclusion problems," Indian Journal of Pure and Applied Mathematics, Springer, vol. 46(6), pages 901-920, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- J. W. Chen & Y. J. Cho & S. A. Khan & Z. Wan & C. F. Wen, 2015. "The Levitin-Polyak well-posedness by perturbations for systems of general variational inclusion and disclusion problems," Indian Journal of Pure and Applied Mathematics, Springer, vol. 46(6), pages 901-920, December.
- S. Li & M. Li, 2009. "Levitin–Polyak well-posedness of vector equilibrium problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 69(1), pages 125-140, March.
- Yi-bin Xiao & Nan-jing Huang, 2011. "Well-posedness for a Class of Variational–Hemivariational Inequalities with Perturbations," Journal of Optimization Theory and Applications, Springer, vol. 151(1), pages 33-51, October.
- Savin Treanţă, 2022. "Well-Posedness Results of Certain Variational Inequalities," Mathematics, MDPI, vol. 10(20), pages 1-15, October.
- N. J. Huang & J. Li & J. C. Yao, 2007. "Gap Functions and Existence of Solutions for a System of Vector Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 133(2), pages 201-212, May.
- M. Darabi & J. Zafarani, 2015. "Tykhonov Well-Posedness for Quasi-Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 165(2), pages 458-479, May.
- Gang Xiao & Hong Xiao & Sanyang Liu, 2011. "Scalarization and pointwise well-posedness in vector optimization problems," Journal of Global Optimization, Springer, vol. 49(4), pages 561-574, April.
- T. C. E. Cheng & Y. N. Wu, 2006. "A Multiproduct, Multicriterion Supply-Demand Network Equilibrium Model," Operations Research, INFORMS, vol. 54(3), pages 544-554, June.
- M. Beatrice Lignola & Jacqueline Morgan, 2015. "MinSup Problems with Quasi-equilibrium Constraints and Viscosity Solutions," CSEF Working Papers 393, Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy.
- Suhel Ahmad Khan & Jia-Wei Chen, 2015. "Gap Functions and Error Bounds for Generalized Mixed Vector Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 166(3), pages 767-776, September.
- Yunan Wu & Yuchen Peng & Long Peng & Ling Xu, 2012. "Super Efficiency of Multicriterion Network Equilibrium Model and Vector Variational Inequality," Journal of Optimization Theory and Applications, Springer, vol. 153(2), pages 485-496, May.
- Q. H. Ansari & L. J. Lin & L. B. Su, 2005. "Systems of Simultaneous Generalized Vector Quasiequilibrium Problems and their Applications," Journal of Optimization Theory and Applications, Springer, vol. 127(1), pages 27-44, October.
- Yu Han & Nan-jing Huang, 2018. "Continuity and Convexity of a Nonlinear Scalarizing Function in Set Optimization Problems with Applications," Journal of Optimization Theory and Applications, Springer, vol. 177(3), pages 679-695, June.
- Bin Chen & Nan-jing Huang, 2013. "Continuity of the solution mapping to parametric generalized vector equilibrium problems," Journal of Global Optimization, Springer, vol. 56(4), pages 1515-1528, August.
- Elena-Andreea Florea, 2018. "Vector Optimization Problems with Generalized Functional Constraints in Variable Ordering Structure Setting," Journal of Optimization Theory and Applications, Springer, vol. 178(1), pages 94-118, July.
- Nguyen Van Hung & Vicente Novo & Vo Minh Tam, 2022. "Error bound analysis for vector equilibrium problems with partial order provided by a polyhedral cone," Journal of Global Optimization, Springer, vol. 82(1), pages 139-159, January.
- J. H. Qiu & Y. Hao, 2010. "Scalarization of Henig Properly Efficient Points in Locally Convex Spaces," Journal of Optimization Theory and Applications, Springer, vol. 147(1), pages 71-92, October.
- Phan Khanh & Vo Long, 2014. "Invariant-point theorems and existence of solutions to optimization-related problems," Journal of Global Optimization, Springer, vol. 58(3), pages 545-564, March.
- Gabriele Eichfelder & Refail Kasimbeyli, 2014. "Properly optimal elements in vector optimization with variable ordering structures," Journal of Global Optimization, Springer, vol. 60(4), pages 689-712, December.
- Li, S.J. & Chen, C.R. & Li, X.B. & Teo, K.L., 2011. "Hölder continuity and upper estimates of solutions to vector quasiequilibrium problems," European Journal of Operational Research, Elsevier, vol. 210(2), pages 148-157, April.
More about this item
Keywords
System of set-valued vector quasi-equilibrium problem; Existence theorem; Levitin–Polyak well-posedness by perturbations; Parametric gap function; Nonlinear scalarization function; 49J40; 49K40; 90C33;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:77:y:2013:i:1:p:33-64. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.