IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v165y2015i1d10.1007_s10957-014-0591-x.html
   My bibliography  Save this article

Strict Fejér Monotonicity by Superiorization of Feasibility-Seeking Projection Methods

Author

Listed:
  • Yair Censor

    (University of Haifa)

  • Alexander J. Zaslavski

    (The Technion – Israel Institute of Technology)

Abstract

We consider the superiorization methodology, which can be thought of as lying between feasibility-seeking and constrained minimization. It is not quite trying to solve the full-fledged constrained minimization problem; rather, the task is to find a feasible point which is superior (with respect to the objective function value) to one returned by a feasibility-seeking only algorithm. Our main result reveals new information about the mathematical behavior of the superiorization methodology. We deal with a constrained minimization problem with a feasible region, which is the intersection of finitely many closed convex constraint sets, and use the dynamic string-averaging projection method, with variable strings and variable weights, as a feasibility-seeking algorithm. We show that any sequence, generated by the superiorized version of a dynamic string-averaging projection algorithm, not only converges to a feasible point but, additionally, also either its limit point solves the constrained minimization problem or the sequence is strictly Fejér monotone with respect to a subset of the solution set of the original problem.

Suggested Citation

  • Yair Censor & Alexander J. Zaslavski, 2015. "Strict Fejér Monotonicity by Superiorization of Feasibility-Seeking Projection Methods," Journal of Optimization Theory and Applications, Springer, vol. 165(1), pages 172-187, April.
  • Handle: RePEc:spr:joptap:v:165:y:2015:i:1:d:10.1007_s10957-014-0591-x
    DOI: 10.1007/s10957-014-0591-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-014-0591-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-014-0591-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yair Censor & Ran Davidi & Gabor T. Herman & Reinhard W. Schulte & Luba Tetruashvili, 2014. "Projected Subgradient Minimization Versus Superiorization," Journal of Optimization Theory and Applications, Springer, vol. 160(3), pages 730-747, March.
    2. Yair Censor & Alexander Zaslavski, 2013. "Convergence and perturbation resilience of dynamic string-averaging projection methods," Computational Optimization and Applications, Springer, vol. 54(1), pages 65-76, January.
    3. Yair Censor & Wei Chen & Patrick Combettes & Ran Davidi & Gabor Herman, 2012. "On the effectiveness of projection methods for convex feasibility problems with linear inequality constraints," Computational Optimization and Applications, Springer, vol. 51(3), pages 1065-1088, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kaiwen Ma & Nikolaos V. Sahinidis & Sreekanth Rajagopalan & Satyajith Amaran & Scott J Bury, 2021. "Decomposition in derivative-free optimization," Journal of Global Optimization, Springer, vol. 81(2), pages 269-292, October.
    2. Q. L. Dong & J. Z. Huang & X. H. Li & Y. J. Cho & Th. M. Rassias, 2019. "MiKM: multi-step inertial Krasnosel’skiǐ–Mann algorithm and its applications," Journal of Global Optimization, Springer, vol. 73(4), pages 801-824, April.
    3. Yanni Guo & Xiaozhi Zhao, 2019. "Bounded Perturbation Resilience and Superiorization of Proximal Scaled Gradient Algorithm with Multi-Parameters," Mathematics, MDPI, vol. 7(6), pages 1-14, June.
    4. Alexander J. Zaslavski, 2023. "Superiorization with a Projected Subgradient Algorithm on the Solution Sets of Common Fixed Point Problems," Mathematics, MDPI, vol. 11(21), pages 1-12, November.
    5. Aragón-Artacho, Francisco J. & Censor, Yair & Gibali, Aviv & Torregrosa-Belén, David, 2023. "The superiorization method with restarted perturbations for split minimization problems with an application to radiotherapy treatment planning," Applied Mathematics and Computation, Elsevier, vol. 440(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanni Guo & Xiaozhi Zhao, 2019. "Bounded Perturbation Resilience and Superiorization of Proximal Scaled Gradient Algorithm with Multi-Parameters," Mathematics, MDPI, vol. 7(6), pages 1-14, June.
    2. Chin How Jeffrey Pang, 2019. "Dykstra’s Splitting and an Approximate Proximal Point Algorithm for Minimizing the Sum of Convex Functions," Journal of Optimization Theory and Applications, Springer, vol. 182(3), pages 1019-1049, September.
    3. Wenma Jin & Yair Censor & Ming Jiang, 2016. "Bounded perturbation resilience of projected scaled gradient methods," Computational Optimization and Applications, Springer, vol. 63(2), pages 365-392, March.
    4. Kaiwen Ma & Nikolaos V. Sahinidis & Sreekanth Rajagopalan & Satyajith Amaran & Scott J Bury, 2021. "Decomposition in derivative-free optimization," Journal of Global Optimization, Springer, vol. 81(2), pages 269-292, October.
    5. Peichao Duan & Xubang Zheng & Jing Zhao, 2018. "Strong Convergence Theorems of Viscosity Iterative Algorithms for Split Common Fixed Point Problems," Mathematics, MDPI, vol. 7(1), pages 1-14, December.
    6. Xianfu Wang & Xinmin Yang, 2015. "On the Existence of Minimizers of Proximity Functions for Split Feasibility Problems," Journal of Optimization Theory and Applications, Springer, vol. 166(3), pages 861-888, September.
    7. Yair Censor & Ran Davidi & Gabor T. Herman & Reinhard W. Schulte & Luba Tetruashvili, 2014. "Projected Subgradient Minimization Versus Superiorization," Journal of Optimization Theory and Applications, Springer, vol. 160(3), pages 730-747, March.
    8. Howard Heaton & Yair Censor, 2019. "Asynchronous sequential inertial iterations for common fixed points problems with an application to linear systems," Journal of Global Optimization, Springer, vol. 74(1), pages 95-119, May.
    9. Paulo Oliveira, 2014. "A strongly polynomial-time algorithm for the strict homogeneous linear-inequality feasibility problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 80(3), pages 267-284, December.
    10. Stéphane Chrétien & Pascal Bondon, 2020. "Projection Methods for Uniformly Convex Expandable Sets," Mathematics, MDPI, vol. 8(7), pages 1-19, July.
    11. Brendan O’Donoghue & Eric Chu & Neal Parikh & Stephen Boyd, 2016. "Conic Optimization via Operator Splitting and Homogeneous Self-Dual Embedding," Journal of Optimization Theory and Applications, Springer, vol. 169(3), pages 1042-1068, June.
    12. Aviv Gibali & Karl-Heinz Küfer & Daniel Reem & Philipp Süss, 2018. "A generalized projection-based scheme for solving convex constrained optimization problems," Computational Optimization and Applications, Springer, vol. 70(3), pages 737-762, July.
    13. Ron Aharoni & Yair Censor & Zilin Jiang, 2018. "Finding a best approximation pair of points for two polyhedra," Computational Optimization and Applications, Springer, vol. 71(2), pages 509-523, November.
    14. Yair Censor & Alexander Zaslavski, 2013. "Convergence and perturbation resilience of dynamic string-averaging projection methods," Computational Optimization and Applications, Springer, vol. 54(1), pages 65-76, January.
    15. Aragón-Artacho, Francisco J. & Censor, Yair & Gibali, Aviv & Torregrosa-Belén, David, 2023. "The superiorization method with restarted perturbations for split minimization problems with an application to radiotherapy treatment planning," Applied Mathematics and Computation, Elsevier, vol. 440(C).
    16. Hongjin He & Chen Ling & Hong-Kun Xu, 2015. "A Relaxed Projection Method for Split Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 166(1), pages 213-233, July.
    17. Jiawei Chen & Qamrul Hasan Ansari & Yeong-Cheng Liou & Jen-Chih Yao, 2016. "A proximal point algorithm based on decomposition method for cone constrained multiobjective optimization problems," Computational Optimization and Applications, Springer, vol. 65(1), pages 289-308, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:165:y:2015:i:1:d:10.1007_s10957-014-0591-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.