IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i21p4536-d1273761.html
   My bibliography  Save this article

Superiorization with a Projected Subgradient Algorithm on the Solution Sets of Common Fixed Point Problems

Author

Listed:
  • Alexander J. Zaslavski

    (Department of Mathematics, The Technion—Israel Institute of Technology, 32000 Haifa, Israel)

Abstract

In this work, we investigate a minimization problem with a convex objective function on a domain, which is the solution set of a common fixed point problem with a finite family of nonexpansive mappings. Our algorithm is a combination of a projected subgradient algorithm and string-averaging projection method with variable strings and variable weights. This algorithm generates a sequence of iterates which are approximate solutions of the corresponding fixed point problem. Additionally, either this sequence also has a minimizing subsequence for our optimization problem or the sequence is strictly Fejer monotone regarding the approximate solution set of the common fixed point problem.

Suggested Citation

  • Alexander J. Zaslavski, 2023. "Superiorization with a Projected Subgradient Algorithm on the Solution Sets of Common Fixed Point Problems," Mathematics, MDPI, vol. 11(21), pages 1-12, November.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:21:p:4536-:d:1273761
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/21/4536/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/21/4536/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yair Censor & Ran Davidi & Gabor T. Herman & Reinhard W. Schulte & Luba Tetruashvili, 2014. "Projected Subgradient Minimization Versus Superiorization," Journal of Optimization Theory and Applications, Springer, vol. 160(3), pages 730-747, March.
    2. Yair Censor & Alexander J. Zaslavski, 2015. "Strict Fejér Monotonicity by Superiorization of Feasibility-Seeking Projection Methods," Journal of Optimization Theory and Applications, Springer, vol. 165(1), pages 172-187, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanni Guo & Xiaozhi Zhao, 2019. "Bounded Perturbation Resilience and Superiorization of Proximal Scaled Gradient Algorithm with Multi-Parameters," Mathematics, MDPI, vol. 7(6), pages 1-14, June.
    2. Aragón-Artacho, Francisco J. & Censor, Yair & Gibali, Aviv & Torregrosa-Belén, David, 2023. "The superiorization method with restarted perturbations for split minimization problems with an application to radiotherapy treatment planning," Applied Mathematics and Computation, Elsevier, vol. 440(C).
    3. Kaiwen Ma & Nikolaos V. Sahinidis & Sreekanth Rajagopalan & Satyajith Amaran & Scott J Bury, 2021. "Decomposition in derivative-free optimization," Journal of Global Optimization, Springer, vol. 81(2), pages 269-292, October.
    4. Q. L. Dong & J. Z. Huang & X. H. Li & Y. J. Cho & Th. M. Rassias, 2019. "MiKM: multi-step inertial Krasnosel’skiǐ–Mann algorithm and its applications," Journal of Global Optimization, Springer, vol. 73(4), pages 801-824, April.
    5. Chin How Jeffrey Pang, 2019. "Dykstra’s Splitting and an Approximate Proximal Point Algorithm for Minimizing the Sum of Convex Functions," Journal of Optimization Theory and Applications, Springer, vol. 182(3), pages 1019-1049, September.
    6. Wenma Jin & Yair Censor & Ming Jiang, 2016. "Bounded perturbation resilience of projected scaled gradient methods," Computational Optimization and Applications, Springer, vol. 63(2), pages 365-392, March.
    7. Yair Censor & Alexander J. Zaslavski, 2015. "Strict Fejér Monotonicity by Superiorization of Feasibility-Seeking Projection Methods," Journal of Optimization Theory and Applications, Springer, vol. 165(1), pages 172-187, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:21:p:4536-:d:1273761. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.