IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v80y2014i3p267-284.html
   My bibliography  Save this article

A strongly polynomial-time algorithm for the strict homogeneous linear-inequality feasibility problem

Author

Listed:
  • Paulo Oliveira

Abstract

A strongly polynomial-time algorithm is proposed for the strict homogeneous linear-inequality feasibility problem in the positive orthant, that is, to obtain $$x\in \mathbb {R}^n$$ x ∈ R n , such that $$Ax > 0$$ A x > 0 , $$x> 0$$ x > 0 , for an $$m\times n$$ m × n matrix $$A$$ A , $$m\ge n$$ m ≥ n . This algorithm requires $$O(p)$$ O ( p ) iterations and $$O(m^2(n+p))$$ O ( m 2 ( n + p ) ) arithmetical operations to ensure that the distance between the solution and the iteration is $$10^{-p}$$ 10 - p . No matrix inversion is needed. An extension to the non-homogeneous linear feasibility problem is presented. Copyright Springer-Verlag Berlin Heidelberg 2014

Suggested Citation

  • Paulo Oliveira, 2014. "A strongly polynomial-time algorithm for the strict homogeneous linear-inequality feasibility problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 80(3), pages 267-284, December.
  • Handle: RePEc:spr:mathme:v:80:y:2014:i:3:p:267-284
    DOI: 10.1007/s00186-014-0480-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00186-014-0480-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00186-014-0480-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Éva Tardos, 1986. "A Strongly Polynomial Algorithm to Solve Combinatorial Linear Programs," Operations Research, INFORMS, vol. 34(2), pages 250-256, April.
    2. Yair Censor & Wei Chen & Patrick Combettes & Ran Davidi & Gabor Herman, 2012. "On the effectiveness of projection methods for convex feasibility problems with linear inequality constraints," Computational Optimization and Applications, Springer, vol. 51(3), pages 1065-1088, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ting Pong & Hao Sun & Ningchuan Wang & Henry Wolkowicz, 2016. "Eigenvalue, quadratic programming, and semidefinite programming relaxations for a cut minimization problem," Computational Optimization and Applications, Springer, vol. 63(2), pages 333-364, March.
    2. R. B. Bapat & S. K. Neogy, 2016. "On a quadratic programming problem involving distances in trees," Annals of Operations Research, Springer, vol. 243(1), pages 365-373, August.
    3. Amitai Armon & Iftah Gamzu & Danny Segev, 2014. "Mobile facility location: combinatorial filtering via weighted occupancy," Journal of Combinatorial Optimization, Springer, vol. 28(2), pages 358-375, August.
    4. Balaji Gopalakrishnan & Seunghyun Kong & Earl Barnes & Ellis Johnson & Joel Sokol, 2011. "A least-squares minimum-cost network flow algorithm," Annals of Operations Research, Springer, vol. 186(1), pages 119-140, June.
    5. Clemens Heuberger, 2004. "Inverse Combinatorial Optimization: A Survey on Problems, Methods, and Results," Journal of Combinatorial Optimization, Springer, vol. 8(3), pages 329-361, September.
    6. Amitabh Basu & Jesús A. De Loera & Mark Junod, 2014. "On Chubanov's Method for Linear Programming," INFORMS Journal on Computing, INFORMS, vol. 26(2), pages 336-350, May.
    7. Peichao Duan & Xubang Zheng & Jing Zhao, 2018. "Strong Convergence Theorems of Viscosity Iterative Algorithms for Split Common Fixed Point Problems," Mathematics, MDPI, vol. 7(1), pages 1-14, December.
    8. Xianfu Wang & Xinmin Yang, 2015. "On the Existence of Minimizers of Proximity Functions for Split Feasibility Problems," Journal of Optimization Theory and Applications, Springer, vol. 166(3), pages 861-888, September.
    9. László A. Végh, 2017. "A Strongly Polynomial Algorithm for Generalized Flow Maximization," Mathematics of Operations Research, INFORMS, vol. 42(1), pages 179-211, January.
    10. Mao-Cheng Cai & Xiaoguang Yang & Yanjun Li, 1999. "Inverse Polymatroidal Flow Problem," Journal of Combinatorial Optimization, Springer, vol. 3(1), pages 115-126, July.
    11. Yair Censor & Ran Davidi & Gabor T. Herman & Reinhard W. Schulte & Luba Tetruashvili, 2014. "Projected Subgradient Minimization Versus Superiorization," Journal of Optimization Theory and Applications, Springer, vol. 160(3), pages 730-747, March.
    12. Ilan Adler & Martin Bullinger & Vijay V. Vazirani, 2024. "A Generalization of von Neumann's Reduction from the Assignment Problem to Zero-Sum Games," Papers 2410.10767, arXiv.org.
    13. D. V. Gribanov & D. S. Malyshev & P. M. Pardalos & S. I. Veselov, 2018. "FPT-algorithms for some problems related to integer programming," Journal of Combinatorial Optimization, Springer, vol. 35(4), pages 1128-1146, May.
    14. M. Cai & X. Yang & Y. Li, 2000. "Inverse Problems of Submodular Functions on Digraphs," Journal of Optimization Theory and Applications, Springer, vol. 104(3), pages 559-575, March.
    15. Howard Heaton & Yair Censor, 2019. "Asynchronous sequential inertial iterations for common fixed points problems with an application to linear systems," Journal of Global Optimization, Springer, vol. 74(1), pages 95-119, May.
    16. Prabhjot Kaur & Anuj Sharma & Vanita Verma & Kalpana Dahiya, 2022. "An alternate approach to solve two-level hierarchical time minimization transportation problem," 4OR, Springer, vol. 20(1), pages 23-61, March.
    17. Steffen Borgwardt & Stephan Patterson, 2021. "On the computational complexity of finding a sparse Wasserstein barycenter," Journal of Combinatorial Optimization, Springer, vol. 41(3), pages 736-761, April.
    18. Orlin, James B., 1953-., 1988. "A faster strongly polynomial minimum cost flow algorithm," Working papers 2042-88., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    19. Cai Mao-Cheng, 1999. "Inverse Problems of Matroid Intersection," Journal of Combinatorial Optimization, Springer, vol. 3(4), pages 465-474, December.
    20. Puerto, Justo & Tamir, Arie & Perea, Federico, 2011. "A cooperative location game based on the 1-center location problem," European Journal of Operational Research, Elsevier, vol. 214(2), pages 317-330, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:80:y:2014:i:3:p:267-284. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.