IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v162y2014i3d10.1007_s10957-013-0327-3.html
   My bibliography  Save this article

Optimality Conditions for Vector Optimization Problems with Difference of Convex Maps

Author

Listed:
  • X. L. Guo

    (Chongqing University
    Henan Institute of Engineering)

  • S. J. Li

    (Chongqing University)

Abstract

In this paper, by using the notion of strong subdifferential and epsilon-subdifferential, necessary optimality conditions are established firstly for an epsilon-weak Pareto minimal point and an epsilon-proper Pareto minimal point of a vector optimization problem, where its objective function and constraint set are denoted by using differences of two vector-valued maps, respectively. Then, by using the concept of approximate pseudo-dissipativity, sufficient optimality conditions are obtained. As an application of these results, sufficient and necessary optimality conditions are also given for an epsilon-weak Pareto minimal point and an epsilon-proper Pareto minimal point of a vector fractional mathematical programming.

Suggested Citation

  • X. L. Guo & S. J. Li, 2014. "Optimality Conditions for Vector Optimization Problems with Difference of Convex Maps," Journal of Optimization Theory and Applications, Springer, vol. 162(3), pages 821-844, September.
  • Handle: RePEc:spr:joptap:v:162:y:2014:i:3:d:10.1007_s10957-013-0327-3
    DOI: 10.1007/s10957-013-0327-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-013-0327-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-013-0327-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. F. Flores-BAZÁN & W. Oettli, 2001. "Simplified Optimality Conditions for Minimizing the Difference of Vector-Valued Functions," Journal of Optimization Theory and Applications, Springer, vol. 108(3), pages 571-586, March.
    2. Guang Ya Chen & Johannes Jahn, 1998. "Optimality conditions for set-valued optimization problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 48(2), pages 187-200, November.
    3. Radu Boţ & Delia-Maria Nechita, 2011. "On the Dini-Hadamard subdifferential of the difference of two functions," Journal of Global Optimization, Springer, vol. 50(3), pages 485-502, July.
    4. Jean-Paul Penot, 2011. "The directional subdifferential of the difference of two convex functions," Journal of Global Optimization, Springer, vol. 49(3), pages 505-519, March.
    5. S. J. Li & S. K. Zhu & X. B. Li, 2012. "Second-Order Optimality Conditions for Strict Efficiency of Constrained Set-Valued Optimization," Journal of Optimization Theory and Applications, Springer, vol. 155(2), pages 534-557, November.
    6. J. Baier & J. Jahn, 1999. "On Subdifferentials of Set-Valued Maps," Journal of Optimization Theory and Applications, Springer, vol. 100(1), pages 233-240, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Glaydston Carvalho Bento & Sandro Dimy Barbosa Bitar & João Xavier Cruz Neto & Antoine Soubeyran & João Carlos Oliveira Souza, 2020. "A proximal point method for difference of convex functions in multi-objective optimization with application to group dynamic problems," Computational Optimization and Applications, Springer, vol. 75(1), pages 263-290, January.
    2. Yldenilson Torres Almeida & João Xavier Cruz Neto & Paulo Roberto Oliveira & João Carlos de Oliveira Souza, 2020. "A modified proximal point method for DC functions on Hadamard manifolds," Computational Optimization and Applications, Springer, vol. 76(3), pages 649-673, July.
    3. Allahkaram Shafie & Farid Bozorgnia, 2019. "A Note on the Paper “Optimality Conditions for Vector Optimization Problems with Difference of Convex Maps”," Journal of Optimization Theory and Applications, Springer, vol. 182(2), pages 837-849, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elvira Hernández & Luis Rodríguez-Marín, 2011. "Weak and Strong Subgradients of Set-Valued Maps," Journal of Optimization Theory and Applications, Springer, vol. 149(2), pages 352-365, May.
    2. S. K. Mishra & Vivek Laha, 2013. "On Approximately Star-Shaped Functions and Approximate Vector Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 156(2), pages 278-293, February.
    3. Mansi Dhingra, 2019. "Henig proper subdifferential of set-valued maps," OPSEARCH, Springer;Operational Research Society of India, vol. 56(3), pages 790-805, September.
    4. X. J. Long & J. W. Peng & X. B. Li, 2014. "Weak Subdifferentials for Set-Valued Mappings," Journal of Optimization Theory and Applications, Springer, vol. 162(1), pages 1-12, July.
    5. P. Q. Khanh & N. M. Tung, 2015. "Second-Order Optimality Conditions with the Envelope-Like Effect for Set-Valued Optimization," Journal of Optimization Theory and Applications, Springer, vol. 167(1), pages 68-90, October.
    6. P. Q. Khanh & N. D. Tuan, 2008. "Higher-Order Variational Sets and Higher-Order Optimality Conditions for Proper Efficiency in Set-Valued Nonsmooth Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 243-261, November.
    7. Nguyen Minh Tung & Nguyen Xuan Duy Bao, 2023. "New Set-Valued Directional Derivatives: Calculus and Optimality Conditions," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 411-437, May.
    8. Jean-Paul Penot, 2011. "The directional subdifferential of the difference of two convex functions," Journal of Global Optimization, Springer, vol. 49(3), pages 505-519, March.
    9. J. Y. Bello Cruz & G. Bouza Allende, 2014. "A Steepest Descent-Like Method for Variable Order Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 162(2), pages 371-391, August.
    10. Xiang-Kai Sun & Sheng-Jie Li, 2014. "Generalized second-order contingent epiderivatives in parametric vector optimization problems," Journal of Global Optimization, Springer, vol. 58(2), pages 351-363, February.
    11. Davide LA TORRE, 2004. "Characterizations of convex vector functions and optimization by mollified derivatives," Departmental Working Papers 2004-09, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    12. J. Jahn & A. A. Khan & P. Zeilinger, 2005. "Second-Order Optimality Conditions in Set Optimization," Journal of Optimization Theory and Applications, Springer, vol. 125(2), pages 331-347, May.
    13. Phan Quoc Khanh & Nguyen Minh Tung, 2016. "Second-Order Conditions for Open-Cone Minimizers and Firm Minimizers in Set-Valued Optimization Subject to Mixed Constraints," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 45-69, October.
    14. Nguyen Thi Toan & Le Quang Thuy, 2023. "S-Derivative of the Extremum Multifunction to a Multi-objective Parametric Discrete Optimal Control Problem," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 240-265, January.
    15. Mounir El Maghri, 2015. "( $$\epsilon $$ ϵ -)Efficiency in difference vector optimization," Journal of Global Optimization, Springer, vol. 61(4), pages 803-812, April.
    16. Amos Uderzo, 2023. "Conditions for the stability of ideal efficient solutions in parametric vector optimization via set-valued inclusions," Journal of Global Optimization, Springer, vol. 85(4), pages 917-940, April.
    17. Nguyen Anh & Phan Khanh, 2013. "Higher-order optimality conditions in set-valued optimization using radial sets and radial derivatives," Journal of Global Optimization, Springer, vol. 56(2), pages 519-536, June.
    18. Pedro Merino, 2019. "A difference-of-convex functions approach for sparse PDE optimal control problems with nonconvex costs," Computational Optimization and Applications, Springer, vol. 74(1), pages 225-258, September.
    19. Nguyen Hoang Anh & Phan Khanh, 2014. "Higher-order optimality conditions for proper efficiency in nonsmooth vector optimization using radial sets and radial derivatives," Journal of Global Optimization, Springer, vol. 58(4), pages 693-709, April.
    20. Glaydston Carvalho Bento & Sandro Dimy Barbosa Bitar & João Xavier Cruz Neto & Antoine Soubeyran & João Carlos Oliveira Souza, 2020. "A proximal point method for difference of convex functions in multi-objective optimization with application to group dynamic problems," Computational Optimization and Applications, Springer, vol. 75(1), pages 263-290, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:162:y:2014:i:3:d:10.1007_s10957-013-0327-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.