IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-02351104.html
   My bibliography  Save this paper

A proximal point method for difference of convex functions in multi-objective optimization with application to group dynamic problems

Author

Listed:
  • Glaydston de Carvalho Bento

    (IME - IME, Federal University of Goiás)

  • Sandro Dimy Barbosa Bitar

    (ICE - ICE, Federal University of Amazonas)

  • João Xavier da Cruz Neto

    (CCN, DM, - CCN, DM, Federal University of Piauí)

  • Antoine Soubeyran

    (AMSE - Aix-Marseille Sciences Economiques - EHESS - École des hautes études en sciences sociales - AMU - Aix Marseille Université - ECM - École Centrale de Marseille - CNRS - Centre National de la Recherche Scientifique)

  • João Carlos de Oliveira Souza

    (Federal University of Piauí)

Abstract

We consider the constrained multi-objective optimization problem of finding Pareto critical points of difference of convex functions. The new approach proposed by Bento et al. (SIAM J Optim 28:1104–1120, 2018) to study the convergence of the proximal point method is applied. Our method minimizes at each iteration a convex approximation instead of the (non-convex) objective function constrained to a possibly non-convex set which assures the vector improving process. The motivation comes from the famous Group Dynamic problem in Behavioral Sciences where, at each step, a group of (possible badly informed) agents tries to increase his joint payoff, in order to be able to increase the payoff of each of them. In this way, at each step, this ascent process guarantees the stability of the group. Some encouraging preliminary numerical results are reported.

Suggested Citation

  • Glaydston de Carvalho Bento & Sandro Dimy Barbosa Bitar & João Xavier da Cruz Neto & Antoine Soubeyran & João Carlos de Oliveira Souza, 2020. "A proximal point method for difference of convex functions in multi-objective optimization with application to group dynamic problems," Post-Print hal-02351104, HAL.
  • Handle: RePEc:hal:journl:hal-02351104
    DOI: 10.1007/s10589-019-00139-0
    Note: View the original document on HAL open archive server: https://amu.hal.science/hal-02351104
    as

    Download full text from publisher

    File URL: https://amu.hal.science/hal-02351104/document
    Download Restriction: no

    File URL: https://libkey.io/10.1007/s10589-019-00139-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ceng, Lu-Chuan & Yao, Jen-Chih, 2007. "Approximate proximal methods in vector optimization," European Journal of Operational Research, Elsevier, vol. 183(1), pages 1-19, November.
    2. Albert Ferrer & Adil Bagirov & Gleb Beliakov, 2015. "Solving DC programs using the cutting angle method," Journal of Global Optimization, Springer, vol. 61(1), pages 71-89, January.
    3. G. C. Bento & J. X. Cruz Neto, 2013. "A Subgradient Method for Multiobjective Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 159(1), pages 125-137, October.
    4. Ying Ji & Mark Goh & Robert Souza, 2016. "Proximal Point Algorithms for Multi-criteria Optimization with the Difference of Convex Objective Functions," Journal of Optimization Theory and Applications, Springer, vol. 169(1), pages 280-289, April.
    5. F. Flores-BAZÁN & W. Oettli, 2001. "Simplified Optimality Conditions for Minimizing the Difference of Vector-Valued Functions," Journal of Optimization Theory and Applications, Springer, vol. 108(3), pages 571-586, March.
    6. G. C. Bento & A. Soubeyran, 2015. "Generalized Inexact Proximal Algorithms: Routine’s Formation with Resistance to Change, Following Worthwhile Changes," Journal of Optimization Theory and Applications, Springer, vol. 166(1), pages 172-187, July.
    7. G. Bento & J. Cruz Neto & G. López & Antoine Soubeyran & J. Souza, 2018. "The Proximal Point Method for Locally Lipschitz Functions in Multiobjective Optimization with Application to the Compromise Problem," Post-Print hal-01985333, HAL.
    8. L. C. Ceng & B. S. Mordukhovich & J. C. Yao, 2010. "Hybrid Approximate Proximal Method with Auxiliary Variational Inequality for Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 146(2), pages 267-303, August.
    9. J. Cruz Neto & G. Silva & O. Ferreira & J. Lopes, 2013. "A subgradient method for multiobjective optimization," Computational Optimization and Applications, Springer, vol. 54(3), pages 461-472, April.
    10. Qu, Shaojian & Liu, Chen & Goh, Mark & Li, Yijun & Ji, Ying, 2014. "Nonsmooth multiobjective programming with quasi-Newton methods," European Journal of Operational Research, Elsevier, vol. 235(3), pages 503-510.
    11. Bento, G.C. & Cruz Neto, J.X. & Oliveira, P.R. & Soubeyran, A., 2014. "The self regulation problem as an inexact steepest descent method for multicriteria optimization," European Journal of Operational Research, Elsevier, vol. 235(3), pages 494-502.
    12. X. L. Guo & S. J. Li, 2014. "Optimality Conditions for Vector Optimization Problems with Difference of Convex Maps," Journal of Optimization Theory and Applications, Springer, vol. 162(3), pages 821-844, September.
    13. Glaydston de C. Bento & João Xavier Cruz Neto & Lucas V. Meireles, 2018. "Proximal Point Method for Locally Lipschitz Functions in Multiobjective Optimization of Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 37-52, October.
    14. Terry Ross, G. & Soland, Richard M., 1980. "A multicriteria approach to the location of public facilities," European Journal of Operational Research, Elsevier, vol. 4(5), pages 307-321, May.
    15. X. X. Huang & X. Q. Yang, 2004. "Duality for Multiobjective Optimization via Nonlinear Lagrangian Functions," Journal of Optimization Theory and Applications, Springer, vol. 120(1), pages 111-127, January.
    16. H. Apolinário & E. Papa Quiroz & P. Oliveira, 2016. "A scalarization proximal point method for quasiconvex multiobjective minimization," Journal of Global Optimization, Springer, vol. 64(1), pages 79-96, January.
    17. Glaydston Carvalho Bento & J.X. Cruz Neto & Antoine Soubeyran, 2014. "A Proximal Point-Type Method for Multicriteria Optimization," Post-Print hal-01463765, HAL.
    18. Brito, A.S. & Cruz Neto, J.X. & Santos, P.S.M. & Souza, S.S., 2017. "A relaxed projection method for solving multiobjective optimization problems," European Journal of Operational Research, Elsevier, vol. 256(1), pages 17-23.
    19. Bo Wen & Xiaojun Chen & Ting Kei Pong, 2018. "A proximal difference-of-convex algorithm with extrapolation," Computational Optimization and Applications, Springer, vol. 69(2), pages 297-324, March.
    20. Villacorta, Kely D.V. & Oliveira, P. Roberto, 2011. "An interior proximal method in vector optimization," European Journal of Operational Research, Elsevier, vol. 214(3), pages 485-492, November.
    21. N. Dinh & J. Strodiot & V. Nguyen, 2010. "Duality and optimality conditions for generalized equilibrium problems involving DC functions," Journal of Global Optimization, Springer, vol. 48(2), pages 183-208, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rekha R. Jaichander & Izhar Ahmad & Krishna Kummari & Suliman Al-Homidan, 2022. "Robust Nonsmooth Interval-Valued Optimization Problems Involving Uncertainty Constraints," Mathematics, MDPI, vol. 10(11), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erik Alex Papa Quiroz & Nancy Baygorrea Cusihuallpa & Nelson Maculan, 2020. "Inexact Proximal Point Methods for Multiobjective Quasiconvex Minimization on Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 186(3), pages 879-898, September.
    2. G. C. Bento & J. X. Cruz Neto & L. V. Meireles & A. Soubeyran, 2022. "Pareto solutions as limits of collective traps: an inexact multiobjective proximal point algorithm," Annals of Operations Research, Springer, vol. 316(2), pages 1425-1443, September.
    3. G. Bento & J. Cruz Neto & G. López & Antoine Soubeyran & J. Souza, 2018. "The Proximal Point Method for Locally Lipschitz Functions in Multiobjective Optimization with Application to the Compromise Problem," Post-Print hal-01985333, HAL.
    4. Xiaopeng Zhao & Jen-Chih Yao, 2022. "Linear convergence of a nonmonotone projected gradient method for multiobjective optimization," Journal of Global Optimization, Springer, vol. 82(3), pages 577-594, March.
    5. Alfredo N. Iusem & Jefferson G. Melo & Ray G. Serra, 2021. "A Strongly Convergent Proximal Point Method for Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 183-200, July.
    6. Brito, A.S. & Cruz Neto, J.X. & Santos, P.S.M. & Souza, S.S., 2017. "A relaxed projection method for solving multiobjective optimization problems," European Journal of Operational Research, Elsevier, vol. 256(1), pages 17-23.
    7. H. Apolinário & E. Papa Quiroz & P. Oliveira, 2016. "A scalarization proximal point method for quasiconvex multiobjective minimization," Journal of Global Optimization, Springer, vol. 64(1), pages 79-96, January.
    8. Xiaopeng Zhao & Markus A. Köbis & Yonghong Yao & Jen-Chih Yao, 2021. "A Projected Subgradient Method for Nondifferentiable Quasiconvex Multiobjective Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 82-107, July.
    9. Yldenilson Torres Almeida & João Xavier Cruz Neto & Paulo Roberto Oliveira & João Carlos de Oliveira Souza, 2020. "A modified proximal point method for DC functions on Hadamard manifolds," Computational Optimization and Applications, Springer, vol. 76(3), pages 649-673, July.
    10. Qu, Shaojian & Ji, Ying & Jiang, Jianlin & Zhang, Qingpu, 2017. "Nonmonotone gradient methods for vector optimization with a portfolio optimization application," European Journal of Operational Research, Elsevier, vol. 263(2), pages 356-366.
    11. Erik Alex Papa Quiroz & Hellena Christina Fernandes Apolinário & Kely Diana Villacorta & Paulo Roberto Oliveira, 2019. "A Linear Scalarization Proximal Point Method for Quasiconvex Multiobjective Minimization," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 1028-1052, December.
    12. Glaydston de C. Bento & João Xavier Cruz Neto & Lucas V. Meireles, 2018. "Proximal Point Method for Locally Lipschitz Functions in Multiobjective Optimization of Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 37-52, October.
    13. João Carlos de O. Souza, 2018. "Proximal Point Methods for Lipschitz Functions on Hadamard Manifolds: Scalar and Vectorial Cases," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 745-760, December.
    14. Gonçalves, M.L.N. & Lima, F.S. & Prudente, L.F., 2022. "A study of Liu-Storey conjugate gradient methods for vector optimization," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    15. J. X. Cruz Neto & J. O. Lopes & A. Soubeyran & J. C. O. Souza, 2022. "Abstract regularized equilibria: application to Becker’s household behavior theory," Annals of Operations Research, Springer, vol. 316(2), pages 1279-1300, September.
    16. Wang Chen & Xinmin Yang & Yong Zhao, 2023. "Conditional gradient method for vector optimization," Computational Optimization and Applications, Springer, vol. 85(3), pages 857-896, July.
    17. N. Hoseini Monjezi & S. Nobakhtian, 2022. "An inexact multiple proximal bundle algorithm for nonsmooth nonconvex multiobjective optimization problems," Annals of Operations Research, Springer, vol. 311(2), pages 1123-1154, April.
    18. Rogério A. Rocha & Paulo R. Oliveira & Ronaldo M. Gregório & Michael Souza, 2016. "A Proximal Point Algorithm with Quasi-distance in Multi-objective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 171(3), pages 964-979, December.
    19. M. L. N. Gonçalves & L. F. Prudente, 2020. "On the extension of the Hager–Zhang conjugate gradient method for vector optimization," Computational Optimization and Applications, Springer, vol. 76(3), pages 889-916, July.
    20. L. F. Prudente & D. R. Souza, 2022. "A Quasi-Newton Method with Wolfe Line Searches for Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 1107-1140, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-02351104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.