IDEAS home Printed from https://ideas.repec.org/a/spr/opsear/v56y2019i3d10.1007_s12597-019-00397-w.html
   My bibliography  Save this article

Henig proper subdifferential of set-valued maps

Author

Listed:
  • Mansi Dhingra

    (University of Delhi)

Abstract

We present a notion of Henig proper subdifferential and characterize it in terms of Henig efficiency. We also present existence and some calculus rules for Henig proper subdifferentials. Using this subdifferential, we derive optimality criteria for a constrained set-valued optimization problem.

Suggested Citation

  • Mansi Dhingra, 2019. "Henig proper subdifferential of set-valued maps," OPSEARCH, Springer;Operational Research Society of India, vol. 56(3), pages 790-805, September.
  • Handle: RePEc:spr:opsear:v:56:y:2019:i:3:d:10.1007_s12597-019-00397-w
    DOI: 10.1007/s12597-019-00397-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12597-019-00397-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12597-019-00397-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guang Ya Chen & Johannes Jahn, 1998. "Optimality conditions for set-valued optimization problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 48(2), pages 187-200, November.
    2. J. Baier & J. Jahn, 1999. "On Subdifferentials of Set-Valued Maps," Journal of Optimization Theory and Applications, Springer, vol. 100(1), pages 233-240, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. X. L. Guo & S. J. Li, 2014. "Optimality Conditions for Vector Optimization Problems with Difference of Convex Maps," Journal of Optimization Theory and Applications, Springer, vol. 162(3), pages 821-844, September.
    2. Elvira Hernández & Luis Rodríguez-Marín, 2011. "Weak and Strong Subgradients of Set-Valued Maps," Journal of Optimization Theory and Applications, Springer, vol. 149(2), pages 352-365, May.
    3. X. J. Long & J. W. Peng & X. B. Li, 2014. "Weak Subdifferentials for Set-Valued Mappings," Journal of Optimization Theory and Applications, Springer, vol. 162(1), pages 1-12, July.
    4. P. Q. Khanh & N. D. Tuan, 2008. "Higher-Order Variational Sets and Higher-Order Optimality Conditions for Proper Efficiency in Set-Valued Nonsmooth Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 243-261, November.
    5. S. Zhu & S. Li & K. Teo, 2014. "Second-order Karush–Kuhn–Tucker optimality conditions for set-valued optimization," Journal of Global Optimization, Springer, vol. 58(4), pages 673-692, April.
    6. J. Y. Bello Cruz & G. Bouza Allende, 2014. "A Steepest Descent-Like Method for Variable Order Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 162(2), pages 371-391, August.
    7. Xiang-Kai Sun & Sheng-Jie Li, 2014. "Generalized second-order contingent epiderivatives in parametric vector optimization problems," Journal of Global Optimization, Springer, vol. 58(2), pages 351-363, February.
    8. Davide LA TORRE, 2004. "Characterizations of convex vector functions and optimization by mollified derivatives," Departmental Working Papers 2004-09, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    9. J. Jahn & A. A. Khan & P. Zeilinger, 2005. "Second-Order Optimality Conditions in Set Optimization," Journal of Optimization Theory and Applications, Springer, vol. 125(2), pages 331-347, May.
    10. Nguyen Thi Toan & Le Quang Thuy, 2023. "S-Derivative of the Extremum Multifunction to a Multi-objective Parametric Discrete Optimal Control Problem," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 240-265, January.
    11. Nguyen Anh & Phan Khanh, 2013. "Higher-order optimality conditions in set-valued optimization using radial sets and radial derivatives," Journal of Global Optimization, Springer, vol. 56(2), pages 519-536, June.
    12. L. Y. Xia & J. H. Qiu, 2008. "Superefficiency in Vector Optimization with Nearly Subconvexlike Set-Valued Maps," Journal of Optimization Theory and Applications, Springer, vol. 136(1), pages 125-137, January.
    13. Nguyen Hoang Anh & Phan Khanh, 2014. "Higher-order optimality conditions for proper efficiency in nonsmooth vector optimization using radial sets and radial derivatives," Journal of Global Optimization, Springer, vol. 58(4), pages 693-709, April.
    14. S. Khoshkhabar-amiranloo & E. Khorram, 2015. "Pointwise well-posedness and scalarization in set optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 82(2), pages 195-210, October.
    15. Nithirat Sisarat & Rabian Wangkeeree & Tamaki Tanaka, 2020. "Sequential characterizations of approximate solutions in convex vector optimization problems with set-valued maps," Journal of Global Optimization, Springer, vol. 77(2), pages 273-287, June.
    16. T. D. Chuong & J. C. Yao, 2010. "Generalized Clarke Epiderivatives of Parametric Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 146(1), pages 77-94, July.
    17. J. Baier & J. Jahn, 1999. "On Subdifferentials of Set-Valued Maps," Journal of Optimization Theory and Applications, Springer, vol. 100(1), pages 233-240, January.
    18. P. Q. Khanh & N. D. Tuan, 2008. "Variational Sets of Multivalued Mappings and a Unified Study of Optimality Conditions," Journal of Optimization Theory and Applications, Springer, vol. 139(1), pages 47-65, October.
    19. S. J. Li & S. K. Zhu & K. L. Teo, 2012. "New Generalized Second-Order Contingent Epiderivatives and Set-Valued Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 152(3), pages 587-604, March.
    20. Liu He & Qi-Lin Wang & Ching-Feng Wen & Xiao-Yan Zhang & Xiao-Bing Li, 2019. "A Kind of New Higher-Order Mond-Weir Type Duality for Set-Valued Optimization Problems," Mathematics, MDPI, vol. 7(4), pages 1-18, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:opsear:v:56:y:2019:i:3:d:10.1007_s12597-019-00397-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.