IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v155y2012i2d10.1007_s10957-012-0076-8.html
   My bibliography  Save this article

Second-Order Optimality Conditions for Strict Efficiency of Constrained Set-Valued Optimization

Author

Listed:
  • S. J. Li

    (Chongqing University
    Chongqing University)

  • S. K. Zhu

    (Chongqing University)

  • X. B. Li

    (Chongqing University)

Abstract

In this paper, we propose several second-order derivatives for set-valued maps and discuss their properties. By using these derivatives, we obtain second-order necessary optimality conditions for strict efficiency of a set-valued optimization problem with inclusion constraints in real normed spaces. We also establish second-order sufficient optimality conditions for strict efficiency of the set-valued optimization problem in finite-dimensional normed spaces. As applications, we investigate second-order sufficient and necessary optimality conditions for a strict local efficient solution of order two of a nonsmooth vector optimization problem with an abstract set and a functional constraint.

Suggested Citation

  • S. J. Li & S. K. Zhu & X. B. Li, 2012. "Second-Order Optimality Conditions for Strict Efficiency of Constrained Set-Valued Optimization," Journal of Optimization Theory and Applications, Springer, vol. 155(2), pages 534-557, November.
  • Handle: RePEc:spr:joptap:v:155:y:2012:i:2:d:10.1007_s10957-012-0076-8
    DOI: 10.1007/s10957-012-0076-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-012-0076-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-012-0076-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Jahn & A. A. Khan & P. Zeilinger, 2005. "Second-Order Optimality Conditions in Set Optimization," Journal of Optimization Theory and Applications, Springer, vol. 125(2), pages 331-347, May.
    2. C. Gutiérrez & B. Jiménez & V. Novo, 2009. "New Second-Order Directional Derivative and Optimality Conditions in Scalar and Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 142(1), pages 85-106, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nguyen Minh Tung & Nguyen Xuan Duy Bao, 2023. "New Set-Valued Directional Derivatives: Calculus and Optimality Conditions," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 411-437, May.
    2. P. Q. Khanh & N. M. Tung, 2015. "Second-Order Optimality Conditions with the Envelope-Like Effect for Set-Valued Optimization," Journal of Optimization Theory and Applications, Springer, vol. 167(1), pages 68-90, October.
    3. Phan Quoc Khanh & Nguyen Minh Tung, 2016. "Second-Order Conditions for Open-Cone Minimizers and Firm Minimizers in Set-Valued Optimization Subject to Mixed Constraints," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 45-69, October.
    4. X. L. Guo & S. J. Li, 2014. "Optimality Conditions for Vector Optimization Problems with Difference of Convex Maps," Journal of Optimization Theory and Applications, Springer, vol. 162(3), pages 821-844, September.
    5. Nguyen Minh Tung, 2020. "New Higher-Order Strong Karush–Kuhn–Tucker Conditions for Proper Solutions in Nonsmooth Optimization," Journal of Optimization Theory and Applications, Springer, vol. 185(2), pages 448-475, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. P. Q. Khanh & N. M. Tung, 2015. "Second-Order Optimality Conditions with the Envelope-Like Effect for Set-Valued Optimization," Journal of Optimization Theory and Applications, Springer, vol. 167(1), pages 68-90, October.
    2. P. Q. Khanh & N. D. Tuan, 2008. "Higher-Order Variational Sets and Higher-Order Optimality Conditions for Proper Efficiency in Set-Valued Nonsmooth Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 243-261, November.
    3. Nguyen Minh Tung & Nguyen Xuan Duy Bao, 2023. "New Set-Valued Directional Derivatives: Calculus and Optimality Conditions," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 411-437, May.
    4. Xiang-Kai Sun & Sheng-Jie Li, 2014. "Generalized second-order contingent epiderivatives in parametric vector optimization problems," Journal of Global Optimization, Springer, vol. 58(2), pages 351-363, February.
    5. Phan Quoc Khanh & Nguyen Minh Tung, 2016. "Second-Order Conditions for Open-Cone Minimizers and Firm Minimizers in Set-Valued Optimization Subject to Mixed Constraints," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 45-69, October.
    6. Nguyen Anh & Phan Khanh, 2013. "Higher-order optimality conditions in set-valued optimization using radial sets and radial derivatives," Journal of Global Optimization, Springer, vol. 56(2), pages 519-536, June.
    7. Nguyen Hoang Anh & Phan Khanh, 2014. "Higher-order optimality conditions for proper efficiency in nonsmooth vector optimization using radial sets and radial derivatives," Journal of Global Optimization, Springer, vol. 58(4), pages 693-709, April.
    8. Koushik Das & Savin Treanţă & Tareq Saeed, 2022. "Mond-Weir and Wolfe Duality of Set-Valued Fractional Minimax Problems in Terms of Contingent Epi-Derivative of Second-Order," Mathematics, MDPI, vol. 10(6), pages 1-21, March.
    9. Zhenhua Peng & Yihong Xu, 2017. "New Second-Order Tangent Epiderivatives and Applications to Set-Valued Optimization," Journal of Optimization Theory and Applications, Springer, vol. 172(1), pages 128-140, January.
    10. S. Li & C. Liao, 2012. "Second-order differentiability of generalized perturbation maps," Journal of Global Optimization, Springer, vol. 52(2), pages 243-252, February.
    11. S. J. Li & K. L. Teo & X. Q. Yang, 2008. "Higher-Order Optimality Conditions for Set-Valued Optimization," Journal of Optimization Theory and Applications, Springer, vol. 137(3), pages 533-553, June.
    12. S. J. Li & S. K. Zhu & K. L. Teo, 2012. "New Generalized Second-Order Contingent Epiderivatives and Set-Valued Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 152(3), pages 587-604, March.
    13. Liu He & Qi-Lin Wang & Ching-Feng Wen & Xiao-Yan Zhang & Xiao-Bing Li, 2019. "A Kind of New Higher-Order Mond-Weir Type Duality for Set-Valued Optimization Problems," Mathematics, MDPI, vol. 7(4), pages 1-18, April.
    14. Giorgio, 2019. "On Second-Order Optimality Conditions in Smooth Nonlinear Programming Problems," DEM Working Papers Series 171, University of Pavia, Department of Economics and Management.
    15. N. L. H. Anh & P. Q. Khanh, 2013. "Variational Sets of Perturbation Maps and Applications to Sensitivity Analysis for Constrained Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 158(2), pages 363-384, August.
    16. S. Zhu & S. Li & K. Teo, 2014. "Second-order Karush–Kuhn–Tucker optimality conditions for set-valued optimization," Journal of Global Optimization, Springer, vol. 58(4), pages 673-692, April.
    17. Yi-Hong Xu & Zhen-Hua Peng, 2018. "Second-Order M-Composed Tangent Derivative and Its Applications," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(05), pages 1-20, October.
    18. Jinchuan Zhou & Jingyong Tang & Jein-Shan Chen, 2017. "Parabolic Second-Order Directional Differentiability in the Hadamard Sense of the Vector-Valued Functions Associated with Circular Cones," Journal of Optimization Theory and Applications, Springer, vol. 172(3), pages 802-823, March.
    19. M. H. Li & S. J. Li, 2010. "Second-Order Differential and Sensitivity Properties of Weak Vector Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 144(1), pages 76-87, January.
    20. P. Q. Khanh & N. D. Tuan, 2008. "Variational Sets of Multivalued Mappings and a Unified Study of Optimality Conditions," Journal of Optimization Theory and Applications, Springer, vol. 139(1), pages 47-65, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:155:y:2012:i:2:d:10.1007_s10957-012-0076-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.