IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v167y2015i1d10.1007_s10957-015-0728-6.html
   My bibliography  Save this article

Second-Order Optimality Conditions with the Envelope-Like Effect for Set-Valued Optimization

Author

Listed:
  • P. Q. Khanh

    (International University, Vietnam National University Ho Chi Minh City)

  • N. M. Tung

    (University of Science, Vietnam National University Ho Chi Minh City)

Abstract

We consider Karush–Kuhn–Tucker second-order optimality conditions for nonsmooth set-valued optimization with attention to the envelope-like effect. To analyse the critical feasible directions, which produce this phenomenon, we use the contingent derivatives, the adjacent derivatives and the corresponding asymptotic derivatives, since directions are explicitly involved in these kinds of derivatives. To pursue strong multiplier rules, we impose cone-Aubin conditions to deal with the objective and constraint maps separately. In this way, we can invoke constraint qualifications of the Kurcyusz–Robinson–Zowe type. To our knowledge, some of the results are new; they will be indicated explicitly. The paper also discusses improvements or extensions of known results.

Suggested Citation

  • P. Q. Khanh & N. M. Tung, 2015. "Second-Order Optimality Conditions with the Envelope-Like Effect for Set-Valued Optimization," Journal of Optimization Theory and Applications, Springer, vol. 167(1), pages 68-90, October.
  • Handle: RePEc:spr:joptap:v:167:y:2015:i:1:d:10.1007_s10957-015-0728-6
    DOI: 10.1007/s10957-015-0728-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-015-0728-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-015-0728-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. J. Li & S. K. Zhu & X. B. Li, 2012. "Second-Order Optimality Conditions for Strict Efficiency of Constrained Set-Valued Optimization," Journal of Optimization Theory and Applications, Springer, vol. 155(2), pages 534-557, November.
    2. P. Q. Khanh & N. D. Tuan, 2008. "Variational Sets of Multivalued Mappings and a Unified Study of Optimality Conditions," Journal of Optimization Theory and Applications, Springer, vol. 139(1), pages 47-65, October.
    3. J. Jahn & A. A. Khan & P. Zeilinger, 2005. "Second-Order Optimality Conditions in Set Optimization," Journal of Optimization Theory and Applications, Springer, vol. 125(2), pages 331-347, May.
    4. P. Q. Khanh & N. D. Tuan, 2007. "Optimality Conditions for Nonsmooth Multiobjective Optimization Using Hadamard Directional Derivatives," Journal of Optimization Theory and Applications, Springer, vol. 133(3), pages 341-357, June.
    5. Stephen M. Robinson, 1976. "Regularity and Stability for Convex Multivalued Functions," Mathematics of Operations Research, INFORMS, vol. 1(2), pages 130-143, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Phan Quoc Khanh & Nguyen Minh Tung, 2016. "Second-Order Conditions for Open-Cone Minimizers and Firm Minimizers in Set-Valued Optimization Subject to Mixed Constraints," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 45-69, October.
    2. Nguyen Xuan Duy Bao & Phan Quoc Khanh & Nguyen Minh Tung, 2022. "Quasi-contingent derivatives and studies of higher-orders in nonsmooth optimization," Journal of Global Optimization, Springer, vol. 84(1), pages 205-228, September.
    3. Nguyen Minh Tung & Nguyen Xuan Duy Bao, 2023. "New Set-Valued Directional Derivatives: Calculus and Optimality Conditions," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 411-437, May.
    4. Nguyen Minh Tung, 2020. "New Higher-Order Strong Karush–Kuhn–Tucker Conditions for Proper Solutions in Nonsmooth Optimization," Journal of Optimization Theory and Applications, Springer, vol. 185(2), pages 448-475, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Phan Quoc Khanh & Nguyen Minh Tung, 2016. "Second-Order Conditions for Open-Cone Minimizers and Firm Minimizers in Set-Valued Optimization Subject to Mixed Constraints," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 45-69, October.
    2. Nguyen Minh Tung & Nguyen Xuan Duy Bao, 2023. "New Set-Valued Directional Derivatives: Calculus and Optimality Conditions," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 411-437, May.
    3. N. L. H. Anh & P. Q. Khanh, 2013. "Variational Sets of Perturbation Maps and Applications to Sensitivity Analysis for Constrained Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 158(2), pages 363-384, August.
    4. Nguyen Minh Tung & Nguyen Xuan Duy Bao, 2022. "Higher-order set-valued Hadamard directional derivatives: calculus rules and sensitivity analysis of equilibrium problems and generalized equations," Journal of Global Optimization, Springer, vol. 83(2), pages 377-402, June.
    5. Nguyen Hoang Anh & Phan Khanh, 2014. "Higher-order optimality conditions for proper efficiency in nonsmooth vector optimization using radial sets and radial derivatives," Journal of Global Optimization, Springer, vol. 58(4), pages 693-709, April.
    6. Khanh, Phan Quoc & Quyen, Ho Thuc & Yao, Jen-Chih, 2011. "Optimality conditions under relaxed quasiconvexity assumptions using star and adjusted subdifferentials," European Journal of Operational Research, Elsevier, vol. 212(2), pages 235-241, July.
    7. Nguyen Minh Tung, 2020. "New Higher-Order Strong Karush–Kuhn–Tucker Conditions for Proper Solutions in Nonsmooth Optimization," Journal of Optimization Theory and Applications, Springer, vol. 185(2), pages 448-475, May.
    8. S. J. Li & S. K. Zhu & X. B. Li, 2012. "Second-Order Optimality Conditions for Strict Efficiency of Constrained Set-Valued Optimization," Journal of Optimization Theory and Applications, Springer, vol. 155(2), pages 534-557, November.
    9. Florent Nacry & Vo Anh Thuong Nguyen & Juliette Venel, 2024. "Metric Subregularity and $$\omega (\cdot )$$ ω ( · ) -Normal Regularity Properties," Journal of Optimization Theory and Applications, Springer, vol. 203(2), pages 1439-1470, November.
    10. H. T. H. Diem & P. Q. Khanh & L. T. Tung, 2014. "On Higher-Order Sensitivity Analysis in Nonsmooth Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 162(2), pages 463-488, August.
    11. P. Q. Khanh & N. D. Tuan, 2008. "Higher-Order Variational Sets and Higher-Order Optimality Conditions for Proper Efficiency in Set-Valued Nonsmooth Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 243-261, November.
    12. A. S. Lewis, 2004. "The Structured Distance to Ill-Posedness for Conic Systems," Mathematics of Operations Research, INFORMS, vol. 29(4), pages 776-785, November.
    13. S. Zhu & S. Li & K. Teo, 2014. "Second-order Karush–Kuhn–Tucker optimality conditions for set-valued optimization," Journal of Global Optimization, Springer, vol. 58(4), pages 673-692, April.
    14. Kung Fu Ng & Xi Yin Zheng, 2004. "Characterizations of Error Bounds for Convex Multifunctions on Banach Spaces," Mathematics of Operations Research, INFORMS, vol. 29(1), pages 45-63, February.
    15. Tuan, Nguyen Dinh, 2015. "First and second-order optimality conditions for nonsmooth vector optimization using set-valued directional derivatives," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 300-317.
    16. Xiang-Kai Sun & Sheng-Jie Li, 2014. "Generalized second-order contingent epiderivatives in parametric vector optimization problems," Journal of Global Optimization, Springer, vol. 58(2), pages 351-363, February.
    17. C. Zălinescu, 2003. "A Nonlinear Extension of Hoffman's Error Bounds for Linear Inequalities," Mathematics of Operations Research, INFORMS, vol. 28(3), pages 524-532, August.
    18. M. V. Dolgopolik, 2023. "DC semidefinite programming and cone constrained DC optimization II: local search methods," Computational Optimization and Applications, Springer, vol. 85(3), pages 993-1031, July.
    19. X. L. Guo & S. J. Li, 2014. "Optimality Conditions for Vector Optimization Problems with Difference of Convex Maps," Journal of Optimization Theory and Applications, Springer, vol. 162(3), pages 821-844, September.
    20. G. Kassay & J. Kolumban, 2000. "Multivalued Parametric Variational Inequalities with α-Pseudomonotone Maps," Journal of Optimization Theory and Applications, Springer, vol. 107(1), pages 35-50, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:167:y:2015:i:1:d:10.1007_s10957-015-0728-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.