IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v160y2014i3d10.1007_s10957-013-0314-8.html
   My bibliography  Save this article

Nonsmooth Semi-infinite Multiobjective Optimization Problems

Author

Listed:
  • Thai Doan Chuong

    (Saigon University)

  • Do Sang Kim

    (Pukyong National University)

Abstract

We apply some advanced tools of variational analysis and generalized differentiation to establish necessary conditions for (weakly) efficient solutions of a nonsmooth semi-infinite multiobjective optimization problem (SIMOP for brevity). Sufficient conditions for (weakly) efficient solutions of a SIMOP are also provided by means of introducing the concepts of (strictly) generalized convex functions defined in terms of the limiting subdifferential of locally Lipschitz functions. In addition, we propose types of Wolfe and Mond–Weir dual problems for SIMOPs, and explore weak and strong duality relations under assumptions of (strictly) generalized convexity. Examples are also designed to analyze and illustrate the obtained results.

Suggested Citation

  • Thai Doan Chuong & Do Sang Kim, 2014. "Nonsmooth Semi-infinite Multiobjective Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 160(3), pages 748-762, March.
  • Handle: RePEc:spr:joptap:v:160:y:2014:i:3:d:10.1007_s10957-013-0314-8
    DOI: 10.1007/s10957-013-0314-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-013-0314-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-013-0314-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. T. D. Chuong & J. C. Yao, 2010. "Generalized Clarke Epiderivatives of Parametric Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 146(1), pages 77-94, July.
    2. S. Kum & G. S. Kim & G. M. Lee, 2008. "Duality for ε-Variational Inequality," Journal of Optimization Theory and Applications, Springer, vol. 139(3), pages 649-655, December.
    3. Kanzi, N. & Nobakhtian, S., 2010. "Necessary optimality conditions for nonsmooth generalized semi-infinite programming problems," European Journal of Operational Research, Elsevier, vol. 205(2), pages 253-261, September.
    4. T. Chuong & N. Huy & J. Yao, 2009. "Stability of semi-infinite vector optimization problems under functional perturbations," Computational Optimization and Applications, Springer, vol. 45(4), pages 583-595, December.
    5. Chuong, T.D. & Huy, N.Q. & Yao, J.C., 2010. "Pseudo-Lipschitz property of linear semi-infinite vector optimization problems," European Journal of Operational Research, Elsevier, vol. 200(3), pages 639-644, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tamanna Yadav & S. K. Gupta & Sumit Kumar, 2024. "Optimality analysis and duality conditions for a class of conic semi-infinite program having vanishing constraints," Annals of Operations Research, Springer, vol. 340(2), pages 1091-1123, September.
    2. Thai Doan Chuong & Do Sang Kim, 2018. "Normal regularity for the feasible set of semi-infinite multiobjective optimization problems with applications," Annals of Operations Research, Springer, vol. 267(1), pages 81-99, August.
    3. Thai Doan Chuong, 2021. "Optimality and duality in nonsmooth composite vector optimization and applications," Annals of Operations Research, Springer, vol. 296(1), pages 755-777, January.
    4. Jae Hyoung Lee & Gue Myung Lee, 2018. "On optimality conditions and duality theorems for robust semi-infinite multiobjective optimization problems," Annals of Operations Research, Springer, vol. 269(1), pages 419-438, October.
    5. Groetzner, Patrick & Werner, Ralf, 2022. "Multiobjective optimization under uncertainty: A multiobjective robust (relative) regret approach," European Journal of Operational Research, Elsevier, vol. 296(1), pages 101-115.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thai Chuong & Jen-Chih Yao, 2013. "Fréchet subdifferentials of efficient point multifunctions in parametric vector optimization," Journal of Global Optimization, Springer, vol. 57(4), pages 1229-1243, December.
    2. Thai Doan Chuong, 2013. "Derivatives of the Efficient Point Multifunction in Parametric Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 156(2), pages 247-265, February.
    3. T. Chuong & A. Kruger & J.-C. Yao, 2011. "Calmness of efficient solution maps in parametric vector optimization," Journal of Global Optimization, Springer, vol. 51(4), pages 677-688, December.
    4. Goberna, M.A. & Guerra-Vazquez, F. & Todorov, M.I., 2013. "Constraint qualifications in linear vector semi-infinite optimization," European Journal of Operational Research, Elsevier, vol. 227(1), pages 12-21.
    5. N. Huy & D. Kim, 2013. "Lipschitz behavior of solutions to nonconvex semi-infinite vector optimization problems," Journal of Global Optimization, Springer, vol. 56(2), pages 431-448, June.
    6. Shiva Kapoor & C. S. Lalitha, 2019. "Stability in unified semi-infinite vector optimization," Journal of Global Optimization, Springer, vol. 74(2), pages 383-399, June.
    7. Zai-Yun Peng & Jian-Wen Peng & Xian-Jun Long & Jen-Chih Yao, 2018. "On the stability of solutions for semi-infinite vector optimization problems," Journal of Global Optimization, Springer, vol. 70(1), pages 55-69, January.
    8. N. Q. Huy & J.-C. Yao, 2011. "Semi-Infinite Optimization under Convex Function Perturbations: Lipschitz Stability," Journal of Optimization Theory and Applications, Springer, vol. 148(2), pages 237-256, February.
    9. T. D. Chuong & J. C. Yao, 2010. "Generalized Clarke Epiderivatives of Parametric Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 146(1), pages 77-94, July.
    10. Thai Doan Chuong & Jen-Chih Yao, 2014. "Isolated and Proper Efficiencies in Semi-Infinite Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 162(2), pages 447-462, August.
    11. Goberna, M.A. & Guerra-Vazquez, F. & Todorov, M.I., 2016. "Constraint qualifications in convex vector semi-infinite optimization," European Journal of Operational Research, Elsevier, vol. 249(1), pages 32-40.
    12. Chuong, T.D. & Jeyakumar, V., 2017. "Convergent hierarchy of SDP relaxations for a class of semi-infinite convex polynomial programs and applications," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 381-399.
    13. Stein, Oliver, 2012. "How to solve a semi-infinite optimization problem," European Journal of Operational Research, Elsevier, vol. 223(2), pages 312-320.
    14. H. T. H. Diem & P. Q. Khanh & L. T. Tung, 2014. "On Higher-Order Sensitivity Analysis in Nonsmooth Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 162(2), pages 463-488, August.
    15. Duong Thi Viet An & Nguyen Huy Hung & Nguyen Tuyen, 2024. "Subdifferentials and Coderivatives of Efficient Point Multifunctions in Parametric Convex Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 202(2), pages 745-770, August.
    16. Xiang-Kai Sun & Sheng-Jie Li, 2014. "Generalized second-order contingent epiderivatives in parametric vector optimization problems," Journal of Global Optimization, Springer, vol. 58(2), pages 351-363, February.
    17. Thai Doan Chuong & Do Sang Kim, 2018. "Normal regularity for the feasible set of semi-infinite multiobjective optimization problems with applications," Annals of Operations Research, Springer, vol. 267(1), pages 81-99, August.
    18. F. García & M. A. Melguizo Padial, 2015. "Sensitivity Analysis in Convex Optimization through the Circatangent Derivative," Journal of Optimization Theory and Applications, Springer, vol. 165(2), pages 420-438, May.
    19. Nguyen Thi Toan & Le Quang Thuy, 2023. "S-Derivative of the Extremum Multifunction to a Multi-objective Parametric Discrete Optimal Control Problem," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 240-265, January.
    20. Amos Uderzo, 2023. "Conditions for the stability of ideal efficient solutions in parametric vector optimization via set-valued inclusions," Journal of Global Optimization, Springer, vol. 85(4), pages 917-940, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:160:y:2014:i:3:d:10.1007_s10957-013-0314-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.