IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v165y2015i2d10.1007_s10957-014-0609-4.html
   My bibliography  Save this article

Sensitivity Analysis in Convex Optimization through the Circatangent Derivative

Author

Listed:
  • F. García

    (Universidad de Alicante)

  • M. A. Melguizo Padial

    (Universidad de Alicante)

Abstract

The main goal of this paper is to analyse the sensitivity of a vector convex optimization problem according to variations in the right-hand side. We measure the quantitative behavior of a certain set of Pareto optimal points characterized to become minimum when the objective function is composed with a positive function. Its behavior is analysed quantitatively using the circatangent derivative for set-valued maps. Particularly, it is shown that the sensitivity is closely related to a Lagrange multiplier solution of a dual program.

Suggested Citation

  • F. García & M. A. Melguizo Padial, 2015. "Sensitivity Analysis in Convex Optimization through the Circatangent Derivative," Journal of Optimization Theory and Applications, Springer, vol. 165(2), pages 420-438, May.
  • Handle: RePEc:spr:joptap:v:165:y:2015:i:2:d:10.1007_s10957-014-0609-4
    DOI: 10.1007/s10957-014-0609-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-014-0609-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-014-0609-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. T. D. Chuong & J. C. Yao, 2010. "Generalized Clarke Epiderivatives of Parametric Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 146(1), pages 77-94, July.
    2. Hansen, Pierre & Labbe, Martine & Wendell, Richard E., 1989. "Sensitivity analysis in multiple objective linear programming: The tolerance approach," European Journal of Operational Research, Elsevier, vol. 38(1), pages 63-69, January.
    3. Balbas, A. & Ballve, M. & Jimenez Guerra, P., 2001. "Density theorems for ideal points in vector optimization," European Journal of Operational Research, Elsevier, vol. 133(2), pages 260-266, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thai Chuong & Jen-Chih Yao, 2013. "Fréchet subdifferentials of efficient point multifunctions in parametric vector optimization," Journal of Global Optimization, Springer, vol. 57(4), pages 1229-1243, December.
    2. Thai Doan Chuong & Do Sang Kim, 2014. "Nonsmooth Semi-infinite Multiobjective Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 160(3), pages 748-762, March.
    3. H. T. H. Diem & P. Q. Khanh & L. T. Tung, 2014. "On Higher-Order Sensitivity Analysis in Nonsmooth Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 162(2), pages 463-488, August.
    4. Duong Thi Viet An & Nguyen Huy Hung & Nguyen Tuyen, 2024. "Subdifferentials and Coderivatives of Efficient Point Multifunctions in Parametric Convex Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 202(2), pages 745-770, August.
    5. P. Jiménez Guerra & M. A. Melguizo & M. J. Muñoz-Bouzo, 2009. "Polar Conic Set-Valued Map in Vector Optimization. Continuity and Derivability," Journal of Optimization Theory and Applications, Springer, vol. 142(2), pages 343-354, August.
    6. Xiang-Kai Sun & Sheng-Jie Li, 2014. "Generalized second-order contingent epiderivatives in parametric vector optimization problems," Journal of Global Optimization, Springer, vol. 58(2), pages 351-363, February.
    7. Thai Doan Chuong & Do Sang Kim, 2018. "Normal regularity for the feasible set of semi-infinite multiobjective optimization problems with applications," Annals of Operations Research, Springer, vol. 267(1), pages 81-99, August.
    8. Nguyen Thi Toan & Le Quang Thuy, 2023. "S-Derivative of the Extremum Multifunction to a Multi-objective Parametric Discrete Optimal Control Problem," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 240-265, January.
    9. Sitarz, Sebastian, 2008. "Postoptimal analysis in multicriteria linear programming," European Journal of Operational Research, Elsevier, vol. 191(1), pages 7-18, November.
    10. Marmol, A. M. & Puerto, J., 1997. "Special cases of the tolerance approach in multiobjective linear programming," European Journal of Operational Research, Elsevier, vol. 98(3), pages 610-616, May.
    11. Nguyen Minh Tung & Nguyen Xuan Duy Bao, 2022. "Higher-order set-valued Hadamard directional derivatives: calculus rules and sensitivity analysis of equilibrium problems and generalized equations," Journal of Global Optimization, Springer, vol. 83(2), pages 377-402, June.
    12. Pereira Borges, Ana Rosa & Henggeler Antunes, Carlos, 2002. "A visual interactive tolerance approach to sensitivity analysis in MOLP," European Journal of Operational Research, Elsevier, vol. 142(2), pages 357-381, October.
    13. Hinojosa, M.A. & Mármol, A.M., 2011. "Axial solutions for multiple objective linear problems. An application to target setting in DEA models with preferences," Omega, Elsevier, vol. 39(2), pages 159-167, April.
    14. M. A. Hinojosa & A. M. Mármol, 2011. "Egalitarianism and Utilitarianism in Multiple Criteria Decision Problems with Partial Information," Group Decision and Negotiation, Springer, vol. 20(6), pages 707-724, November.
    15. Ballve, M. E. & Jimenez Guerra, P., 2005. "Some geometrical aspects of the efficient line in vector optimization," European Journal of Operational Research, Elsevier, vol. 162(2), pages 497-502, April.
    16. Vetschera, Rudolf, 1996. "A recursive algorithm for volume-based sensitivity analysis of linear decision models," Discussion Papers, Series I 279, University of Konstanz, Department of Economics.
    17. Hladík, Milan & Sitarz, Sebastian, 2013. "Maximal and supremal tolerances in multiobjective linear programming," European Journal of Operational Research, Elsevier, vol. 228(1), pages 93-101.
    18. Thai Doan Chuong, 2013. "Derivatives of the Efficient Point Multifunction in Parametric Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 156(2), pages 247-265, February.
    19. Sebastian Sitarz, 2010. "Standard sensitivity analysis and additive tolerance approach in MOLP," Annals of Operations Research, Springer, vol. 181(1), pages 219-232, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:165:y:2015:i:2:d:10.1007_s10957-014-0609-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.