IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v200y2010i3p639-644.html
   My bibliography  Save this article

Pseudo-Lipschitz property of linear semi-infinite vector optimization problems

Author

Listed:
  • Chuong, T.D.
  • Huy, N.Q.
  • Yao, J.C.

Abstract

This paper is devoted to the study of the pseudo-Lipschitz property of Pareto solution map for the parametric linear semi-infinite vector optimization problem (LSVO). We establish new sufficient conditions for the pseudo-Lipschitz property of the Pareto solution map of (LSVO) under continuous perturbations of the right-hand side of the constraints and linear perturbations of the objective function. Examples are given to illustrate the results obtained.

Suggested Citation

  • Chuong, T.D. & Huy, N.Q. & Yao, J.C., 2010. "Pseudo-Lipschitz property of linear semi-infinite vector optimization problems," European Journal of Operational Research, Elsevier, vol. 200(3), pages 639-644, February.
  • Handle: RePEc:eee:ejores:v:200:y:2010:i:3:p:639-644
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(09)00016-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Todorov, Maxim Ivanov, 1996. "Kuratowski convergence of the efficient sets in the parametric linear vector semi-infinite optimization," European Journal of Operational Research, Elsevier, vol. 94(3), pages 610-617, November.
    2. Canovas, M.J. & Lopez, M.A. & Parra, J. & Toledo, F.J., 2007. "Sufficient conditions for total ill-posedness in linear semi-infinite optimization," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1126-1136, September.
    3. Goberna, M.A. & Gomez, S. & Guerra, F. & Todorov, M.I., 2007. "Sensitivity analysis in linear semi-infinite programming: Perturbing cost and right-hand-side coefficients," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1069-1085, September.
    4. Charalambos D. Aliprantis & Kim C. Border, 2006. "Infinite Dimensional Analysis," Springer Books, Springer, edition 0, number 978-3-540-29587-7, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thai Chuong & Jen-Chih Yao, 2013. "Fréchet subdifferentials of efficient point multifunctions in parametric vector optimization," Journal of Global Optimization, Springer, vol. 57(4), pages 1229-1243, December.
    2. Thai Doan Chuong & Do Sang Kim, 2014. "Nonsmooth Semi-infinite Multiobjective Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 160(3), pages 748-762, March.
    3. N. Q. Huy & J.-C. Yao, 2011. "Semi-Infinite Optimization under Convex Function Perturbations: Lipschitz Stability," Journal of Optimization Theory and Applications, Springer, vol. 148(2), pages 237-256, February.
    4. Shiva Kapoor & C. S. Lalitha, 2019. "Stability in unified semi-infinite vector optimization," Journal of Global Optimization, Springer, vol. 74(2), pages 383-399, June.
    5. Thai Doan Chuong, 2013. "Derivatives of the Efficient Point Multifunction in Parametric Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 156(2), pages 247-265, February.
    6. Thai Doan Chuong & Jen-Chih Yao, 2014. "Isolated and Proper Efficiencies in Semi-Infinite Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 162(2), pages 447-462, August.
    7. T. D. Chuong & J. C. Yao, 2010. "Generalized Clarke Epiderivatives of Parametric Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 146(1), pages 77-94, July.
    8. Zai-Yun Peng & Jian-Wen Peng & Xian-Jun Long & Jen-Chih Yao, 2018. "On the stability of solutions for semi-infinite vector optimization problems," Journal of Global Optimization, Springer, vol. 70(1), pages 55-69, January.
    9. N. Huy & D. Kim, 2013. "Lipschitz behavior of solutions to nonconvex semi-infinite vector optimization problems," Journal of Global Optimization, Springer, vol. 56(2), pages 431-448, June.
    10. Goberna, M.A. & Guerra-Vazquez, F. & Todorov, M.I., 2016. "Constraint qualifications in convex vector semi-infinite optimization," European Journal of Operational Research, Elsevier, vol. 249(1), pages 32-40.
    11. Goberna, M.A. & Guerra-Vazquez, F. & Todorov, M.I., 2013. "Constraint qualifications in linear vector semi-infinite optimization," European Journal of Operational Research, Elsevier, vol. 227(1), pages 12-21.
    12. T. Chuong & A. Kruger & J.-C. Yao, 2011. "Calmness of efficient solution maps in parametric vector optimization," Journal of Global Optimization, Springer, vol. 51(4), pages 677-688, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. T. Chuong & N. Huy & J. Yao, 2009. "Stability of semi-infinite vector optimization problems under functional perturbations," Computational Optimization and Applications, Springer, vol. 45(4), pages 583-595, December.
    2. Campi, Luciano & Zabaljauregui, Diego, 2020. "Optimal market making under partial information with general intensities," LSE Research Online Documents on Economics 104612, London School of Economics and Political Science, LSE Library.
    3. He, Wei & Sun, Yeneng, 2013. "Stationary Markov Perfect Equilibria in Discounted Stochastic Games," MPRA Paper 51274, University Library of Munich, Germany.
    4. Eduardo Perez & Delphine Prady, 2012. "Complicating to Persuade?," Working Papers hal-03583827, HAL.
    5. Romain Blanchard & Laurence Carassus & Miklós Rásonyi, 2018. "No-arbitrage and optimal investment with possibly non-concave utilities: a measure theoretical approach," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 88(2), pages 241-281, October.
    6. René Aïd & Matteo Basei & Giorgia Callegaro & Luciano Campi & Tiziano Vargiolu, 2020. "Nonzero-Sum Stochastic Differential Games with Impulse Controls: A Verification Theorem with Applications," Mathematics of Operations Research, INFORMS, vol. 45(1), pages 205-232, February.
    7. He, Wei & Yannelis, Nicholas C., 2015. "Equilibrium theory under ambiguity," Journal of Mathematical Economics, Elsevier, vol. 61(C), pages 86-95.
    8. Massimiliano Amarante & Mario Ghossoub & Edmund Phelps, 2012. "Contracting for Innovation under Knightian Uncertainty," Cahiers de recherche 18-2012, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    9. Sudhir A. Shah, 2016. "The Generalized Arrow-Pratt Coefficient," Working Papers id:10795, eSocialSciences.
    10. Luçon, Eric, 2020. "Quenched asymptotics for interacting diffusions on inhomogeneous random graphs," Stochastic Processes and their Applications, Elsevier, vol. 130(11), pages 6783-6842.
    11. Lashi Bandara & Paul Bryan, 2020. "Heat kernels and regularity for rough metrics on smooth manifolds," Mathematische Nachrichten, Wiley Blackwell, vol. 293(12), pages 2255-2270, December.
    12. Carlos Pimienta & Jianfei Shen, 2014. "On the equivalence between (quasi-)perfect and sequential equilibria," International Journal of Game Theory, Springer;Game Theory Society, vol. 43(2), pages 395-402, May.
    13. Oriol Carbonell-Nicolau, 2021. "Equilibria in infinite games of incomplete information," International Journal of Game Theory, Springer;Game Theory Society, vol. 50(2), pages 311-360, June.
    14. Amarante, Massimiliano & Ghossoub, Mario & Phelps, Edmund, 2015. "Ambiguity on the insurer’s side: The demand for insurance," Journal of Mathematical Economics, Elsevier, vol. 58(C), pages 61-78.
    15. Toraubally, Waseem A., 2018. "Large market games, the law of one price, and market structure," Journal of Mathematical Economics, Elsevier, vol. 78(C), pages 13-26.
    16. Atı̇la Abdulkadı̇roğlu & Joshua D. Angrist & Yusuke Narita & Parag Pathak, 2022. "Breaking Ties: Regression Discontinuity Design Meets Market Design," Econometrica, Econometric Society, vol. 90(1), pages 117-151, January.
    17. Mira Frick & Ryota Iijima & Tomasz Strzalecki, 2019. "Dynamic Random Utility," Econometrica, Econometric Society, vol. 87(6), pages 1941-2002, November.
    18. Camacho, Carmen & Kamihigashi, Takashi & Sağlam, Çağrı, 2018. "Robust comparative statics for non-monotone shocks in large aggregative games," Journal of Economic Theory, Elsevier, vol. 174(C), pages 288-299.
    19. Basile, Achille & Graziano, Maria Gabriella & Papadaki, Maria & Polyrakis, Ioannis A., 2017. "Cones with semi-interior points and equilibrium," Journal of Mathematical Economics, Elsevier, vol. 71(C), pages 36-48.
    20. Elliot Lipnowski & Laurent Mathevet & Dong Wei, 2020. "Attention Management," American Economic Review: Insights, American Economic Association, vol. 2(1), pages 17-32, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:200:y:2010:i:3:p:639-644. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.