IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v150y2011i1d10.1007_s10957-011-9808-4.html
   My bibliography  Save this article

Exponential Stability for Delayed Stochastic Bidirectional Associative Memory Neural Networks with Markovian Jumping and Impulses

Author

Listed:
  • R. Sakthivel

    (Sungkyunkwan University)

  • R. Raja

    (Periyar University)

  • S. M. Anthoni

    (Anna University Coimbatore)

Abstract

In this paper, the problem of stability analysis for a class of delayed stochastic bidirectional associative memory neural network with Markovian jumping parameters and impulses are being investigated. The jumping parameters assumed here are continuous-time, discrete-state homogenous Markov chain and the delays are time-variant. Some novel criteria for exponential stability in the mean square are obtained by using a Lyapunov function, Ito’s formula and linear matrix inequality optimization approach. The derived conditions are presented in terms of linear matrix inequalities. The estimate of the exponential convergence rate is also given, which depends on the system parameters and impulsive disturbed intension. In addition, a numerical example is given to show that the obtained result significantly improve the allowable upper bounds of delays over some existing results.

Suggested Citation

  • R. Sakthivel & R. Raja & S. M. Anthoni, 2011. "Exponential Stability for Delayed Stochastic Bidirectional Associative Memory Neural Networks with Markovian Jumping and Impulses," Journal of Optimization Theory and Applications, Springer, vol. 150(1), pages 166-187, July.
  • Handle: RePEc:spr:joptap:v:150:y:2011:i:1:d:10.1007_s10957-011-9808-4
    DOI: 10.1007/s10957-011-9808-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-011-9808-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-011-9808-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xia, Yonghui & Huang, Zhenkun & Han, Maoan, 2008. "Exponential p-stability of delayed Cohen–Grossberg-type BAM neural networks with impulses," Chaos, Solitons & Fractals, Elsevier, vol. 38(3), pages 806-818.
    2. Song, Qiankun & Wang, Zidong, 2008. "Stability analysis of impulsive stochastic Cohen–Grossberg neural networks with mixed time delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3314-3326.
    3. Senan, Sibel & Arik, Sabri, 2009. "New results for global robust stability of bidirectional associative memory neural networks with multiple time delays," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 2106-2114.
    4. Park, Ju H., 2006. "A novel criterion for global asymptotic stability of BAM neural networks with time delays," Chaos, Solitons & Fractals, Elsevier, vol. 29(2), pages 446-453.
    5. Lou, Xuyang & Cui, Baotong, 2009. "Stochastic stability analysis for delayed neural networks of neutral type with Markovian jump parameters," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2188-2197.
    6. R. Sakthivel & R. Samidurai & S. M. Anthoni, 2010. "Asymptotic Stability of Stochastic Delayed Recurrent Neural Networks with Impulsive Effects," Journal of Optimization Theory and Applications, Springer, vol. 147(3), pages 583-596, December.
    7. Li, Yongkun, 2005. "Global exponential stability of BAM neural networks with delays and impulses," Chaos, Solitons & Fractals, Elsevier, vol. 24(1), pages 279-285.
    8. Syed Ali, M. & Balasubramaniam, P., 2009. "Global exponential stability of uncertain fuzzy BAM neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2191-2199.
    9. Park, Ju H., 2006. "On global stability criterion for neural networks with discrete and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 30(4), pages 897-902.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tranthi, Janejira & Botmart, Thongchai & Weera, Wajaree & La-inchua, Teerapong & Pinjai, Sirada, 2022. "New results on robust exponential stability of Takagi–Sugeno fuzzy for neutral differential systems with mixed time-varying delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 714-738.
    2. R. Saravanakumar & M. Syed Ali & H. R. Karimi, 2017. "Robust control of uncertain stochastic Markovian jump systems with mixed time-varying delays," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(4), pages 862-872, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. R. Sakthivel & R. Raja & S. M. Anthoni, 2013. "Exponential Stability for Delayed Stochastic Bidirectional Associative Memory Neural Networks with Markovian Jumping and Impulses," Journal of Optimization Theory and Applications, Springer, vol. 158(1), pages 251-273, July.
    2. Liao, Huaying & Zhang, Zhengqiu & Ren, Ling & Peng, Wenli, 2017. "Global asymptotic stability of periodic solutions for inertial delayed BAM neural networks via novel computing method of degree and inequality techniques," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 785-797.
    3. Park, Ju H. & Lee, S.M. & Kwon, O.M., 2009. "On exponential stability of bidirectional associative memory neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1083-1091.
    4. Yang, Yu & Ye, Jin, 2009. "Stability and bifurcation in a simplified five-neuron BAM neural network with delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2357-2363.
    5. Yang, Degang & Hu, Chunyan & Chen, Yong & Wei, Pengcheng & Yang, Huaqian, 2009. "New delay-dependent global asymptotic stability criteria of delayed BAM neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 854-864.
    6. Qian-hong Zhang & Li-hui Yang, 2012. "Dynamical analysis of fuzzy BAM neural networks with variable delays," Fuzzy Information and Engineering, Springer, vol. 4(1), pages 93-104, March.
    7. Song, Qiankun, 2008. "Novel criteria for global exponential periodicity and stability of recurrent neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 36(3), pages 720-728.
    8. Song, Qiankun & Wang, Zidong, 2008. "Neural networks with discrete and distributed time-varying delays: A general stability analysis," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1538-1547.
    9. Chen, Zhang, 2009. "Dynamic analysis of reaction–diffusion Cohen–Grossberg neural networks with varying delay and Robin boundary conditions," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1724-1730.
    10. Park, Ju H. & Kwon, O.M., 2009. "Global stability for neural networks of neutral-type with interval time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1174-1181.
    11. Wang, Huiwei & Song, Qiankun & Duan, Chengjun, 2010. "LMI criteria on exponential stability of BAM neural networks with both time-varying delays and general activation functions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(4), pages 837-850.
    12. Samidurai, Rajendran & Manivannan, Raman, 2015. "Robust passivity analysis for stochastic impulsive neural networks with leakage and additive time-varying delay components," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 743-762.
    13. J. H. Park & S. M. Lee & H. Y. Jung, 2009. "LMI Optimization Approach to Synchronization of Stochastic Delayed Discrete-Time Complex Networks," Journal of Optimization Theory and Applications, Springer, vol. 143(2), pages 357-367, November.
    14. Xu, Liguang & Xu, Daoyi, 2009. "Exponential p-stability of impulsive stochastic neural networks with mixed delays," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 263-272.
    15. Ratnavelu, K. & Manikandan, M. & Balasubramaniam, P., 2015. "Synchronization of fuzzy bidirectional associative memory neural networks with various time delays," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 582-605.
    16. Hien, Le Van & Son, Doan Thai, 2015. "Finite-time stability of a class of non-autonomous neural networks with heterogeneous proportional delays," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 14-23.
    17. Zhang, Qianhong & Luo, Wei, 2009. "Global exponential stability of fuzzy BAM neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2239-2245.
    18. Singh, Vimal, 2007. "Novel LMI condition for global robust stability of delayed neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 503-508.
    19. Sader, Malika & Abdurahman, Abdujelil & Jiang, Haijun, 2018. "General decay synchronization of delayed BAM neural networks via nonlinear feedback control," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 302-314.
    20. Li, Kelin & Zeng, Huanglin, 2010. "Stability in impulsive Cohen–Grossberg-type BAM neural networks with time-varying delays: A general analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(12), pages 2329-2349.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:150:y:2011:i:1:d:10.1007_s10957-011-9808-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.