IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v81y2010i4p837-850.html
   My bibliography  Save this article

LMI criteria on exponential stability of BAM neural networks with both time-varying delays and general activation functions

Author

Listed:
  • Wang, Huiwei
  • Song, Qiankun
  • Duan, Chengjun

Abstract

In this paper, the exponential stability analysis for the bidirectional associative memory neural network model with both time-varying delays and general activation functions is considered. Neither the boundedness and the monotony on these activation functions nor the differentiability on the time-varying delays are assumed. By employing Lyapunov functional and the linear matrix inequality (LMI) approach, several new sufficient conditions in LMI form are obtained to ensure the existence, uniqueness and global exponential stability of equilibrium point for the neural networks. Moreover, the exponential convergence rate index is estimated, which depends on the system parameters. The proposed stability results are less conservative than some recently known ones in the literature, which is demonstrated via an example with simulation.

Suggested Citation

  • Wang, Huiwei & Song, Qiankun & Duan, Chengjun, 2010. "LMI criteria on exponential stability of BAM neural networks with both time-varying delays and general activation functions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(4), pages 837-850.
  • Handle: RePEc:eee:matcom:v:81:y:2010:i:4:p:837-850
    DOI: 10.1016/j.matcom.2010.08.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475410002958
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2010.08.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Park, Ju H., 2006. "A novel criterion for global asymptotic stability of BAM neural networks with time delays," Chaos, Solitons & Fractals, Elsevier, vol. 29(2), pages 446-453.
    2. Park, Ju H., 2006. "On global stability criterion for neural networks with discrete and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 30(4), pages 897-902.
    3. Shu, Huisheng & Wang, Zidong & Lü, Zengwei, 2009. "Global asymptotic stability of uncertain stochastic bi-directional associative memory networks with discrete and distributed delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(3), pages 490-505.
    4. Park, Ju H., 2008. "On global stability criterion of neural networks with continuously distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 37(2), pages 444-449.
    5. Li, Chuandong & Liao, Xiaofeng & Zhang, Rong, 2005. "Delay-dependent exponential stability analysis of bi-directional associative memory neural networks with time delay: an LMI approach," Chaos, Solitons & Fractals, Elsevier, vol. 24(4), pages 1119-1134.
    6. Park, Ju H. & Lee, S.M. & Kwon, O.M., 2009. "On exponential stability of bidirectional associative memory neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1083-1091.
    7. Sheng, Li & Yang, Huizhong, 2009. "Novel global robust exponential stability criterion for uncertain BAM neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2102-2113.
    8. Cui, Bao Tong & Lou, Xu Yang, 2006. "Global asymptotic stability of BAM neural networks with distributed delays and reaction–diffusion terms," Chaos, Solitons & Fractals, Elsevier, vol. 27(5), pages 1347-1354.
    9. Liu, Yurong & Wang, Zidong & Liu, Xiaohui, 2006. "Global asymptotic stability of generalized bi-directional associative memory networks with discrete and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 28(3), pages 793-803.
    10. Sheng, Li & Yang, Huizhong, 2009. "Robust stability of uncertain Markovian jumping Cohen–Grossberg neural networks with mixed time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2120-2128.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Long, Shujun & Wang, Xiaohu & Li, Dingshi, 2012. "Attracting and invariant sets of non-autonomous reaction-diffusion neural networks with time-varying delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(11), pages 2199-2214.
    2. Jian, Jigui & Wang, Baoxian, 2015. "Global Lagrange stability for neutral-type Cohen–Grossberg BAM neural networks with mixed time-varying delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 116(C), pages 1-25.
    3. Gani Stamov & Ivanka Stamova & Stanislav Simeonov & Ivan Torlakov, 2020. "On the Stability with Respect to H-Manifolds for Cohen–Grossberg-Type Bidirectional Associative Memory Neural Networks with Variable Impulsive Perturbations and Time-Varying Delays," Mathematics, MDPI, vol. 8(3), pages 1-14, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Vimal, 2007. "Novel LMI condition for global robust stability of delayed neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 503-508.
    2. Singh, Vimal, 2009. "Novel global robust stability criterion for neural networks with delay," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 348-353.
    3. Singh, Vimal, 2009. "Remarks on estimating upper limit of norm of delayed connection weight matrix in the study of global robust stability of delayed neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2013-2017.
    4. Zhang, Jianmei & Wu, Jianwei & Bao, Haibo & Cao, Jinde, 2018. "Synchronization analysis of fractional-order three-neuron BAM neural networks with multiple time delays," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 441-450.
    5. Zhang, Qianhong & Luo, Wei, 2009. "Global exponential stability of fuzzy BAM neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2239-2245.
    6. Yang, Degang & Hu, Chunyan & Chen, Yong & Wei, Pengcheng & Yang, Huaqian, 2009. "New delay-dependent global asymptotic stability criteria of delayed BAM neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 854-864.
    7. Qian-hong Zhang & Li-hui Yang, 2012. "Dynamical analysis of fuzzy BAM neural networks with variable delays," Fuzzy Information and Engineering, Springer, vol. 4(1), pages 93-104, March.
    8. Mathiyalagan, K. & Park, Ju H. & Sakthivel, R., 2015. "Synchronization for delayed memristive BAM neural networks using impulsive control with random nonlinearities," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 967-979.
    9. Park, Ju H. & Kwon, O.M., 2009. "Global stability for neural networks of neutral-type with interval time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1174-1181.
    10. Liao, Huaying & Zhang, Zhengqiu & Ren, Ling & Peng, Wenli, 2017. "Global asymptotic stability of periodic solutions for inertial delayed BAM neural networks via novel computing method of degree and inequality techniques," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 785-797.
    11. Song, Qiankun, 2008. "Novel criteria for global exponential periodicity and stability of recurrent neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 36(3), pages 720-728.
    12. Song, Qiankun & Wang, Zidong, 2008. "Neural networks with discrete and distributed time-varying delays: A general stability analysis," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1538-1547.
    13. J. H. Park & S. M. Lee & H. Y. Jung, 2009. "LMI Optimization Approach to Synchronization of Stochastic Delayed Discrete-Time Complex Networks," Journal of Optimization Theory and Applications, Springer, vol. 143(2), pages 357-367, November.
    14. Park, Ju H. & Lee, S.M. & Kwon, O.M., 2009. "On exponential stability of bidirectional associative memory neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1083-1091.
    15. Singh, Vimal, 2007. "Global asymptotic stability of neural networks with delay: Comparative evaluation of two criteria," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1187-1190.
    16. Ratnavelu, K. & Manikandan, M. & Balasubramaniam, P., 2015. "Synchronization of fuzzy bidirectional associative memory neural networks with various time delays," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 582-605.
    17. Singh, Vimal, 2007. "On global exponential stability of delayed cellular neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 188-193.
    18. Yang, Yu & Ye, Jin, 2009. "Stability and bifurcation in a simplified five-neuron BAM neural network with delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2357-2363.
    19. Zheng, Baodong & Zhang, Yazhuo & Zhang, Chunrui, 2008. "Global existence of periodic solutions on a simplified BAM neural network model with delays," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1397-1408.
    20. Sheng, Li & Yang, Huizhong, 2009. "Novel global robust exponential stability criterion for uncertain BAM neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2102-2113.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:81:y:2010:i:4:p:837-850. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.