IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v39y2009i5p2188-2197.html
   My bibliography  Save this article

Stochastic stability analysis for delayed neural networks of neutral type with Markovian jump parameters

Author

Listed:
  • Lou, Xuyang
  • Cui, Baotong

Abstract

In this paper, the problem of stochastic stability for a class of delayed neural networks of neutral type with Markovian jump parameters is investigated. The jumping parameters are modelled as a continuous-time, discrete-state Markov process. A sufficient condition guaranteeing the stochastic stability of the equilibrium point is derived for the Markovian jumping delayed neural networks (MJDNNs) with neutral type. The stability criterion not only eliminates the differences between excitatory and inhibitory effects on the neural networks, but also can be conveniently checked. The sufficient condition obtained can be essentially solved in terms of linear matrix inequality. A numerical example is given to show the effectiveness of the obtained results.

Suggested Citation

  • Lou, Xuyang & Cui, Baotong, 2009. "Stochastic stability analysis for delayed neural networks of neutral type with Markovian jump parameters," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2188-2197.
  • Handle: RePEc:eee:chsofr:v:39:y:2009:i:5:p:2188-2197
    DOI: 10.1016/j.chaos.2007.06.114
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077907004420
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2007.06.114?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Singh, Vimal, 2007. "On global robust stability of interval Hopfield neural networks with delay," Chaos, Solitons & Fractals, Elsevier, vol. 33(4), pages 1183-1188.
    2. Lou, Xuyang & Cui, Baotong, 2007. "Absolute exponential stability analysis of delayed bi-directional associative memory neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 31(3), pages 695-701.
    3. Lou, Xuyang & Cui, Baotong, 2007. "Boundedness and exponential stability for nonautonomous cellular neural networks with reaction–diffusion terms," Chaos, Solitons & Fractals, Elsevier, vol. 33(2), pages 653-662.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. R. Sakthivel & R. Raja & S. M. Anthoni, 2011. "Exponential Stability for Delayed Stochastic Bidirectional Associative Memory Neural Networks with Markovian Jumping and Impulses," Journal of Optimization Theory and Applications, Springer, vol. 150(1), pages 166-187, July.
    2. R. Sakthivel & R. Raja & S. M. Anthoni, 2013. "Exponential Stability for Delayed Stochastic Bidirectional Associative Memory Neural Networks with Markovian Jumping and Impulses," Journal of Optimization Theory and Applications, Springer, vol. 158(1), pages 251-273, July.
    3. Luan, Xiaoli & He, Shuping & Liu, Fei, 2009. "Neural network-based robust fault detection for nonlinear jump systems," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 760-766.
    4. Rathinasamy, Anandaraman & Mayavel, Pichamuthu, 2023. "The balanced split step theta approximations of stochastic neutral Hopfield neural networks with time delay and Poisson jumps," Applied Mathematics and Computation, Elsevier, vol. 455(C).
    5. Liu, Yan & Yu, Pinrui & Chu, Dianhui & Su, Huan, 2019. "Stationary distribution of stochastic Markov jump coupled systems based on graph theory," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 188-195.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Ming & Cui, Baotong, 2009. "Robust exponential stability of interval Cohen–Grossberg neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1914-1928.
    2. Sheng, Li & Yang, Huizhong & Lou, Xuyang, 2009. "Adaptive exponential synchronization of delayed neural networks with reaction-diffusion terms," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 930-939.
    3. Wang, Linshan & Zhang, Yan & Zhang, Zhe & Wang, Yangfan, 2009. "LMI-based approach for global exponential robust stability for reaction–diffusion uncertain neural networks with time-varying delay," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 900-905.
    4. Gao, Ming & Cui, Baotong, 2009. "Global robust stability of neural networks with multiple discrete delays and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1823-1834.
    5. Singh, Vimal, 2009. "Novel global robust stability criterion for neural networks with delay," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 348-353.
    6. Long, Shujun & Wang, Xiaohu & Li, Dingshi, 2012. "Attracting and invariant sets of non-autonomous reaction-diffusion neural networks with time-varying delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(11), pages 2199-2214.
    7. Zhao, Hongyong & Mao, Zisen, 2009. "Boundedness and stability of nonautonomous cellular neural networks with reaction-diffusion terms," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(5), pages 1603-1617.
    8. Singh, Vimal, 2009. "Remarks on estimating upper limit of norm of delayed connection weight matrix in the study of global robust stability of delayed neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2013-2017.
    9. Li, Zuoan & Li, Kelin, 2009. "Stability analysis of impulsive fuzzy cellular neural networks with distributed delays and reaction-diffusion terms," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 492-499.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:39:y:2009:i:5:p:2188-2197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.