IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v39y2009i3p1083-1091.html
   My bibliography  Save this article

On exponential stability of bidirectional associative memory neural networks with time-varying delays

Author

Listed:
  • Park, Ju H.
  • Lee, S.M.
  • Kwon, O.M.

Abstract

For bidirectional associate memory neural networks with time-varying delays, the problems of determining the exponential stability and estimating the exponential convergence rate are investigated by employing the Lyapunov functional method and linear matrix inequality (LMI) technique. A novel criterion for the stability, which give information on the delay-dependent property, is derived. A numerical example is given to demonstrate the effectiveness of the obtained results.

Suggested Citation

  • Park, Ju H. & Lee, S.M. & Kwon, O.M., 2009. "On exponential stability of bidirectional associative memory neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1083-1091.
  • Handle: RePEc:eee:chsofr:v:39:y:2009:i:3:p:1083-1091
    DOI: 10.1016/j.chaos.2007.05.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077907003414
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2007.05.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Park, Ju H., 2006. "A novel criterion for global asymptotic stability of BAM neural networks with time delays," Chaos, Solitons & Fractals, Elsevier, vol. 29(2), pages 446-453.
    2. Li, Chuandong & Liao, Xiaofeng & Zhang, Rong & Prasad, Ashutosh, 2005. "Global robust exponential stability analysis for interval neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 25(3), pages 751-757.
    3. J. H. Park, 2001. "Robust Stabilization for Dynamic Systems with Multiple Time-Varying Delays and Nonlinear Uncertainties," Journal of Optimization Theory and Applications, Springer, vol. 108(1), pages 155-174, January.
    4. Zhang, Qiang & Wei, Xiaopeng & Xu, Jin, 2005. "Delay-dependent exponential stability of cellular neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 23(4), pages 1363-1369.
    5. Huang, Xia & Cao, Jinde & Huang, De-Shuang, 2005. "LMI-based approach for delay-dependent exponential stability analysis of BAM neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 24(3), pages 885-898.
    6. Li, Yongkun, 2005. "Global exponential stability of BAM neural networks with delays and impulses," Chaos, Solitons & Fractals, Elsevier, vol. 24(1), pages 279-285.
    7. J. H. Park, 2005. "Delay-Dependent Criterion for Guaranteed Cost Control of Neutral Delay Systems," Journal of Optimization Theory and Applications, Springer, vol. 124(2), pages 491-502, February.
    8. Park, Ju H., 2006. "On global stability criterion for neural networks with discrete and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 30(4), pages 897-902.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mathiyalagan, K. & Park, Ju H. & Sakthivel, R., 2015. "Synchronization for delayed memristive BAM neural networks using impulsive control with random nonlinearities," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 967-979.
    2. Wang, Huiwei & Song, Qiankun & Duan, Chengjun, 2010. "LMI criteria on exponential stability of BAM neural networks with both time-varying delays and general activation functions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(4), pages 837-850.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Yu & Ye, Jin, 2009. "Stability and bifurcation in a simplified five-neuron BAM neural network with delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2357-2363.
    2. Yang, Degang & Hu, Chunyan & Chen, Yong & Wei, Pengcheng & Yang, Huaqian, 2009. "New delay-dependent global asymptotic stability criteria of delayed BAM neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 854-864.
    3. Qian-hong Zhang & Li-hui Yang, 2012. "Dynamical analysis of fuzzy BAM neural networks with variable delays," Fuzzy Information and Engineering, Springer, vol. 4(1), pages 93-104, March.
    4. J. H. Park & S. M. Lee & H. Y. Jung, 2009. "LMI Optimization Approach to Synchronization of Stochastic Delayed Discrete-Time Complex Networks," Journal of Optimization Theory and Applications, Springer, vol. 143(2), pages 357-367, November.
    5. Yan, Huaicheng & Huang, Xinhan & Wang, Min & Zhang, Hao, 2007. "Delay-dependent stability criteria for a class of networked control systems with multi-input and multi-output," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 997-1005.
    6. Lien, Chang-Hua & Chung, Long-Yeu, 2007. "Global asymptotic stability for cellular neural networks with discrete and distributed time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 34(4), pages 1213-1219.
    7. Zheng, Baodong & Zhang, Yazhuo & Zhang, Chunrui, 2008. "Global existence of periodic solutions on a simplified BAM neural network model with delays," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1397-1408.
    8. Sheng, Li & Yang, Huizhong, 2009. "Novel global robust exponential stability criterion for uncertain BAM neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2102-2113.
    9. Lou, Xu Yang & Cui, Bao Tong, 2008. "Global robust dissipativity for integro-differential systems modeling neural networks with delays," Chaos, Solitons & Fractals, Elsevier, vol. 36(2), pages 469-478.
    10. Li, Yongkun & Xing, Zhiwei, 2007. "Existence and global exponential stability of periodic solution of CNNs with impulses," Chaos, Solitons & Fractals, Elsevier, vol. 33(5), pages 1686-1693.
    11. Liao, Huaying & Zhang, Zhengqiu & Ren, Ling & Peng, Wenli, 2017. "Global asymptotic stability of periodic solutions for inertial delayed BAM neural networks via novel computing method of degree and inequality techniques," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 785-797.
    12. R. Sakthivel & R. Raja & S. M. Anthoni, 2013. "Exponential Stability for Delayed Stochastic Bidirectional Associative Memory Neural Networks with Markovian Jumping and Impulses," Journal of Optimization Theory and Applications, Springer, vol. 158(1), pages 251-273, July.
    13. Xu, Liguang & Xu, Daoyi, 2009. "Exponential p-stability of impulsive stochastic neural networks with mixed delays," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 263-272.
    14. Singh, Vimal, 2007. "Novel LMI condition for global robust stability of delayed neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 503-508.
    15. Sader, Malika & Abdurahman, Abdujelil & Jiang, Haijun, 2018. "General decay synchronization of delayed BAM neural networks via nonlinear feedback control," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 302-314.
    16. Singh, Vimal, 2009. "Novel global robust stability criterion for neural networks with delay," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 348-353.
    17. Yan, Huaicheng & Huang, Xinhan & Wang, Min & Zhang, Hao, 2008. "New delay-dependent stability criteria of uncertain linear systems with multiple time-varying state delays," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 157-165.
    18. Singh, Vimal, 2009. "Remarks on estimating upper limit of norm of delayed connection weight matrix in the study of global robust stability of delayed neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2013-2017.
    19. Song, Qiankun, 2008. "Novel criteria for global exponential periodicity and stability of recurrent neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 36(3), pages 720-728.
    20. R. Sakthivel & R. Raja & S. M. Anthoni, 2011. "Exponential Stability for Delayed Stochastic Bidirectional Associative Memory Neural Networks with Markovian Jumping and Impulses," Journal of Optimization Theory and Applications, Springer, vol. 150(1), pages 166-187, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:39:y:2009:i:3:p:1083-1091. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.