IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v30y2006i4p897-902.html
   My bibliography  Save this article

On global stability criterion for neural networks with discrete and distributed delays

Author

Listed:
  • Park, Ju H.

Abstract

Based on the Lyapunov functional stability analysis for differential equations and the linear matrix inequality (LMI) optimization approach, a new delay-dependent criterion for neural networks with discrete and distributed delays is derived to guarantee global asymptotic stability. The criterion is expressed in terms of LMIs, which can be solved easily by various convex optimization algorithms. Some numerical examples are given to show the effectiveness of proposed method.

Suggested Citation

  • Park, Ju H., 2006. "On global stability criterion for neural networks with discrete and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 30(4), pages 897-902.
  • Handle: RePEc:eee:chsofr:v:30:y:2006:i:4:p:897-902
    DOI: 10.1016/j.chaos.2005.08.147
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077905008027
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2005.08.147?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cao, Jinde & Ho, Daniel W.C., 2005. "A general framework for global asymptotic stability analysis of delayed neural networks based on LMI approach," Chaos, Solitons & Fractals, Elsevier, vol. 24(5), pages 1317-1329.
    2. Cheng, Chao-Jung & Liao, Teh-Lu & Hwang, Chi-Chuan, 2005. "Exponential synchronization of a class of chaotic neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 24(1), pages 197-206.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Park, Ju H., 2008. "On global stability criterion of neural networks with continuously distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 37(2), pages 444-449.
    2. Park, Ju H., 2007. "An analysis of global robust stability of uncertain cellular neural networks with discrete and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 800-807.
    3. Jiang, Yanhong & Yang, Bin & Wang, Jincheng & Shao, Cheng, 2009. "Delay-dependent stability criterion for delayed Hopfield neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2133-2137.
    4. Wang, Weiwei & Cao, Jinde, 2006. "Synchronization in an array of linearly coupled networks with time-varying delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 197-211.
    5. Zhu, Wei & Xu, Daoyi & Huang, Yumei, 2008. "Global impulsive exponential synchronization of time-delayed coupled chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 35(5), pages 904-912.
    6. Song, Qiankun & Wang, Zidong, 2008. "Neural networks with discrete and distributed time-varying delays: A general stability analysis," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1538-1547.
    7. Park, Ju H. & Kwon, O.M., 2009. "Global stability for neural networks of neutral-type with interval time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1174-1181.
    8. Lu, Jianquan & Ho, Daniel W.C., 2008. "Local and global synchronization in general complex dynamical networks with delay coupling," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1497-1510.
    9. Lu, Hongtao & van Leeuwen, C., 2006. "Synchronization of chaotic neural networks via output or state coupling," Chaos, Solitons & Fractals, Elsevier, vol. 30(1), pages 166-176.
    10. Baluni, Sapna & Sehgal, Ishani & Yadav, Vijay K. & Das, Subir, 2024. "Exponential synchronization of a class of quaternion-valued neural network with time-varying delays: A Matrix Measure Approach," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    11. Singh, Vimal, 2007. "Some remarks on global asymptotic stability of neural networks with constant time delay," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1720-1724.
    12. Singh, Vimal, 2007. "Global asymptotic stability of neural networks with delay: Comparative evaluation of two criteria," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1187-1190.
    13. Li, Tao & Fei, Shu-min & Zhang, Kan-jian, 2008. "Synchronization control of recurrent neural networks with distributed delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(4), pages 982-996.
    14. Lu, Junwei & Guo, Yiqian & Xu, Shengyuan, 2006. "Global asymptotic stability analysis for cellular neural networks with time delays," Chaos, Solitons & Fractals, Elsevier, vol. 29(2), pages 349-353.
    15. Singh, Vimal, 2007. "Simplified approach to the exponential stability of delayed neural networks with time varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 609-616.
    16. Gau, R.S. & Lien, C.H. & Hsieh, J.G., 2007. "Global exponential stability for uncertain cellular neural networks with multiple time-varying delays via LMI approach," Chaos, Solitons & Fractals, Elsevier, vol. 32(4), pages 1258-1267.
    17. Singh, Vimal, 2006. "Simplified LMI condition for global asymptotic stability of delayed neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 29(2), pages 470-473.
    18. Rajchakit, G. & Sriraman, R. & Lim, C.P. & Unyong, B., 2022. "Existence, uniqueness and global stability of Clifford-valued neutral-type neural networks with time delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 508-527.
    19. Singh, Vimal, 2007. "Novel LMI condition for global robust stability of delayed neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 503-508.
    20. Gui, Zhanji & Ge, Weigao, 2007. "Periodic solutions of nonautonomous cellular neural networks with impulses," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1760-1771.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:30:y:2006:i:4:p:897-902. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.