IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v42y2009i4p2218-2229.html
   My bibliography  Save this article

Dynamics of continuous-time bidirectional associative memory neural networks with impulses and their discrete counterparts

Author

Listed:
  • Huo, Hai-Feng
  • Li, Wan-Tong

Abstract

This paper is concerned with the global stability characteristics of a system of equations modelling the dynamics of continuous-time bidirectional associative memory neural networks with impulses. Sufficient conditions which guarantee the existence of a unique equilibrium and its exponential stability of the networks are obtained. For the goal of computation, discrete-time analogues of the corresponding continuous-time bidirectional associative memory neural networks with impulses are also formulated and studied. Our results show that the above continuous-time and discrete-time systems with impulses preserve the dynamics of the networks without impulses when we make some modifications and impose some additional conditions on the systems, the convergence characteristics dynamics of the networks are preserved by both continuous-time and discrete-time systems with some restriction imposed on the impulse effect.

Suggested Citation

  • Huo, Hai-Feng & Li, Wan-Tong, 2009. "Dynamics of continuous-time bidirectional associative memory neural networks with impulses and their discrete counterparts," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2218-2229.
  • Handle: RePEc:eee:chsofr:v:42:y:2009:i:4:p:2218-2229
    DOI: 10.1016/j.chaos.2009.03.118
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077909002860
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2009.03.118?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xia, Yonghui & Wong, Patricia J.Y., 2009. "Global exponential stability of a class of retarded impulsive differential equations with applications," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 440-453.
    2. Xia, Yonghui & Huang, Zhenkun & Han, Maoan, 2008. "Exponential p-stability of delayed Cohen–Grossberg-type BAM neural networks with impulses," Chaos, Solitons & Fractals, Elsevier, vol. 38(3), pages 806-818.
    3. Haydar Akça & Abdelkader Boucherif & Valéry Covachev, 2002. "Impulsive functional-differential equations with nonlocal conditions," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 29, pages 1-6, January.
    4. Jiang, Guirong & Yang, Qigui, 2009. "Complex dynamics in a linear impulsive system," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2341-2353.
    5. Mohamad, S. & Gopalsamy, K., 2000. "Dynamics of a class of discrete-time neural networks and their continuous-time counterparts," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 53(1), pages 1-39.
    6. Chen, Jun & Cui, Baotong, 2008. "Impulsive effects on global asymptotic stability of delay BAM neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1115-1125.
    7. Li, Yongkun, 2005. "Global exponential stability of BAM neural networks with delays and impulses," Chaos, Solitons & Fractals, Elsevier, vol. 24(1), pages 279-285.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Kelin & Zeng, Huanglin, 2010. "Stability in impulsive Cohen–Grossberg-type BAM neural networks with time-varying delays: A general analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(12), pages 2329-2349.
    2. Mohamad, Sannay, 2008. "Computer simulations of exponentially convergent networks with large impulses," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 77(4), pages 331-344.
    3. Gui, Zhanji & Ge, Weigao, 2007. "Periodic solutions of nonautonomous cellular neural networks with impulses," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1760-1771.
    4. R. Sakthivel & R. Raja & S. M. Anthoni, 2013. "Exponential Stability for Delayed Stochastic Bidirectional Associative Memory Neural Networks with Markovian Jumping and Impulses," Journal of Optimization Theory and Applications, Springer, vol. 158(1), pages 251-273, July.
    5. R. Sakthivel & R. Raja & S. M. Anthoni, 2011. "Exponential Stability for Delayed Stochastic Bidirectional Associative Memory Neural Networks with Markovian Jumping and Impulses," Journal of Optimization Theory and Applications, Springer, vol. 150(1), pages 166-187, July.
    6. Qi, Xingnan & Bao, Haibo & Cao, Jinde, 2019. "Exponential input-to-state stability of quaternion-valued neural networks with time delay," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 382-393.
    7. Huang, Zai-Tang & Luo, Xiao-Shu & Yang, Qi-Gui, 2007. "Global asymptotic stability analysis of bidirectional associative memory neural networks with distributed delays and impulse," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 878-885.
    8. Luo, Wenpin & Zhong, Shouming & Yang, Jun, 2009. "Global exponential stability of impulsive Cohen–Grossberg neural networks with delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1084-1091.
    9. Xia, Yonghui & Huang, Zhenkun & Han, Maoan, 2008. "Existence and globally exponential stability of equilibrium for BAM neural networks with impulses," Chaos, Solitons & Fractals, Elsevier, vol. 37(2), pages 588-597.
    10. Jian, Jigui & Wang, Baoxian, 2015. "Global Lagrange stability for neutral-type Cohen–Grossberg BAM neural networks with mixed time-varying delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 116(C), pages 1-25.
    11. Park, Ju H. & Lee, S.M. & Kwon, O.M., 2009. "On exponential stability of bidirectional associative memory neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1083-1091.
    12. Lou, Xu Yang & Cui, Bao Tong, 2006. "Global asymptotic stability of delay BAM neural networks with impulses," Chaos, Solitons & Fractals, Elsevier, vol. 29(4), pages 1023-1031.
    13. Kaslik, E. & Balint, St., 2007. "Bifurcation analysis for a two-dimensional delayed discrete-time Hopfield neural network," Chaos, Solitons & Fractals, Elsevier, vol. 34(4), pages 1245-1253.
    14. Yang, Xiaofan & Liao, Xiaofeng & Megson, Graham M. & Evans, David J., 2005. "Global exponential periodicity of a class of neural networks with recent-history distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 25(2), pages 441-447.
    15. Wang, Hui & Liao, Xiaofeng & Li, Chuandong, 2007. "Existence and exponential stability of periodic solution of BAM neural networks with impulse and time-varying delay," Chaos, Solitons & Fractals, Elsevier, vol. 33(3), pages 1028-1039.
    16. Wu, Kai-Ning & Sun, Han-Xiao & Yang, Baoqing & Lim, Cheng-Chew, 2018. "Finite-time boundary control for delay reaction–diffusion systems," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 52-63.
    17. Kumar, Amit & Peeta, Srinivas, 2015. "A day-to-day dynamical model for the evolution of path flows under disequilibrium of traffic networks with fixed demand," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 235-256.
    18. Chen, Zhang & Ruan, Jiong, 2007. "Global dynamic analysis of general Cohen–Grossberg neural networks with impulse," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1830-1837.
    19. Abdurahman, Abdujelil & Abudusaimaiti, Mairemunisa & Jiang, Haijun, 2023. "Fixed/predefined-time lag synchronization of complex-valued BAM neural networks with stochastic perturbations," Applied Mathematics and Computation, Elsevier, vol. 444(C).
    20. Huang, Zai-Tang & Yang, Qi-Gui & Luo, Xiao-shu, 2008. "Exponential stability of impulsive neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 35(4), pages 770-780.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:42:y:2009:i:4:p:2218-2229. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.