IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v142y2009i3d10.1007_s10957-009-9534-3.html
   My bibliography  Save this article

Convergence Results of the ERM Method for Nonlinear Stochastic Variational Inequality Problems

Author

Listed:
  • M. J. Luo

    (Dalian University of Technology)

  • G. H. Lin

    (Dalian University of Technology)

Abstract

This paper considers the expected residual minimization (ERM) method proposed by Luo and Lin (J. Optim. Theory Appl. 140:103–116, 2009) for a class of stochastic variational inequality problems. Different from the work mentioned above, the function involved is assumed to be nonlinear in this paper. We first consider a quasi-Monte Carlo method for the case where the underlying sample space is compact and show that the ERM method is convergent under very mild conditions. Then, we suggest a compact approximation approach for the case where the sample space is noncompact.

Suggested Citation

  • M. J. Luo & G. H. Lin, 2009. "Convergence Results of the ERM Method for Nonlinear Stochastic Variational Inequality Problems," Journal of Optimization Theory and Applications, Springer, vol. 142(3), pages 569-581, September.
  • Handle: RePEc:spr:joptap:v:142:y:2009:i:3:d:10.1007_s10957-009-9534-3
    DOI: 10.1007/s10957-009-9534-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-009-9534-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-009-9534-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiaojun Chen & Masao Fukushima, 2005. "Expected Residual Minimization Method for Stochastic Linear Complementarity Problems," Mathematics of Operations Research, INFORMS, vol. 30(4), pages 1022-1038, November.
    2. C. Zhang & X. Chen, 2008. "Stochastic Nonlinear Complementarity Problem and Applications to Traffic Equilibrium under Uncertainty," Journal of Optimization Theory and Applications, Springer, vol. 137(2), pages 277-295, May.
    3. M. J. Luo & G. H. Lin, 2009. "Expected Residual Minimization Method for Stochastic Variational Inequality Problems," Journal of Optimization Theory and Applications, Springer, vol. 140(1), pages 103-116, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meiju Luo & Menghan Du & Yue Zhang, 2023. "Deterministic Bi-Criteria Model for Solving Stochastic Mixed Vector Variational Inequality Problems," Mathematics, MDPI, vol. 11(15), pages 1-19, August.
    2. Fang Lu & Shengjie Li & Jing Yang, 2015. "Convergence analysis of weighted expected residual method for nonlinear stochastic variational inequality problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 82(2), pages 229-242, October.
    3. Yong Zhao & Jin Zhang & Xinmin Yang & Gui-Hua Lin, 2017. "Expected Residual Minimization Formulation for a Class of Stochastic Vector Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 175(2), pages 545-566, November.
    4. Lu, Fang & Li, Sheng-jie, 2015. "Method of weighted expected residual for solving stochastic variational inequality problems," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 651-663.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang Lu & Shengjie Li & Jing Yang, 2015. "Convergence analysis of weighted expected residual method for nonlinear stochastic variational inequality problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 82(2), pages 229-242, October.
    2. Min Li & Chao Zhang, 2020. "Two-Stage Stochastic Variational Inequality Arising from Stochastic Programming," Journal of Optimization Theory and Applications, Springer, vol. 186(1), pages 324-343, July.
    3. Lu, Fang & Li, Sheng-jie, 2015. "Method of weighted expected residual for solving stochastic variational inequality problems," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 651-663.
    4. M. J. Luo & G. H. Lin, 2009. "Expected Residual Minimization Method for Stochastic Variational Inequality Problems," Journal of Optimization Theory and Applications, Springer, vol. 140(1), pages 103-116, January.
    5. Xiao-Juan Zhang & Xue-Wu Du & Zhen-Ping Yang & Gui-Hua Lin, 2019. "An Infeasible Stochastic Approximation and Projection Algorithm for Stochastic Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 1053-1076, December.
    6. Liyan Xu & Bo Yu, 2014. "CVaR-constrained stochastic programming reformulation for stochastic nonlinear complementarity problems," Computational Optimization and Applications, Springer, vol. 58(2), pages 483-501, June.
    7. Yong Zhao & Jin Zhang & Xinmin Yang & Gui-Hua Lin, 2017. "Expected Residual Minimization Formulation for a Class of Stochastic Vector Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 175(2), pages 545-566, November.
    8. Yanfang Zhang & Xiaojun Chen, 2014. "Regularizations for Stochastic Linear Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 163(2), pages 460-481, November.
    9. Zhang, Chao & Chen, Xiaojun & Sumalee, Agachai, 2011. "Robust Wardrop's user equilibrium assignment under stochastic demand and supply: Expected residual minimization approach," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 534-552, March.
    10. M. Wang & M. M. Ali, 2010. "Stochastic Nonlinear Complementarity Problems: Stochastic Programming Reformulation and Penalty-Based Approximation Method," Journal of Optimization Theory and Applications, Springer, vol. 144(3), pages 597-614, March.
    11. Ming-Zheng Wang & M. Ali, 2014. "On the ERM formulation and a stochastic approximation algorithm of the stochastic- $$R_0$$ R 0 EVLCP," Annals of Operations Research, Springer, vol. 217(1), pages 513-534, June.
    12. Jie Jiang & Shengjie Li, 2021. "Regularized Sample Average Approximation Approach for Two-Stage Stochastic Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 190(2), pages 650-671, August.
    13. G. L. Zhou & L. Caccetta, 2008. "Feasible Semismooth Newton Method for a Class of Stochastic Linear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 379-392, November.
    14. Zhen-Ping Yang & Gui-Hua Lin, 2021. "Variance-Based Single-Call Proximal Extragradient Algorithms for Stochastic Mixed Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 190(2), pages 393-427, August.
    15. Ankur Kulkarni & Uday Shanbhag, 2012. "Recourse-based stochastic nonlinear programming: properties and Benders-SQP algorithms," Computational Optimization and Applications, Springer, vol. 51(1), pages 77-123, January.
    16. Egging, Ruud, 2013. "Benders Decomposition for multi-stage stochastic mixed complementarity problems – Applied to a global natural gas market model," European Journal of Operational Research, Elsevier, vol. 226(2), pages 341-353.
    17. Shouqiang Du & Maolin Che & Yimin Wei, 2020. "Stochastic structured tensors to stochastic complementarity problems," Computational Optimization and Applications, Springer, vol. 75(3), pages 649-668, April.
    18. Zhang, Jie & He, Su-xiang & Wang, Quan, 2014. "A SAA nonlinear regularization method for a stochastic extended vertical linear complementarity problem," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 888-897.
    19. Shouqiang Du & Liyuan Cui & Yuanyuan Chen & Yimin Wei, 2022. "Stochastic Tensor Complementarity Problem with Discrete Distribution," Journal of Optimization Theory and Applications, Springer, vol. 192(3), pages 912-929, March.
    20. B. Jadamba & F. Raciti, 2015. "Variational Inequality Approach to Stochastic Nash Equilibrium Problems with an Application to Cournot Oligopoly," Journal of Optimization Theory and Applications, Springer, vol. 165(3), pages 1050-1070, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:142:y:2009:i:3:d:10.1007_s10957-009-9534-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.