IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v137y2008i2d10.1007_s10957-008-9358-6.html
   My bibliography  Save this article

Stochastic Nonlinear Complementarity Problem and Applications to Traffic Equilibrium under Uncertainty

Author

Listed:
  • C. Zhang

    (Beijing Jiaotong University)

  • X. Chen

    (The Hong Kong Polytechnic University)

Abstract

The expected residual minimization (ERM) formulation for the stochastic nonlinear complementarity problem (SNCP) is studied in this paper. We show that the involved function is a stochastic R 0 function if and only if the objective function in the ERM formulation is coercive under a mild assumption. Moreover, we model the traffic equilibrium problem (TEP) under uncertainty as SNCP and show that the objective function in the ERM formulation is a stochastic R 0 function. Numerical experiments show that the ERM-SNCP model for TEP under uncertainty has various desirable properties.

Suggested Citation

  • C. Zhang & X. Chen, 2008. "Stochastic Nonlinear Complementarity Problem and Applications to Traffic Equilibrium under Uncertainty," Journal of Optimization Theory and Applications, Springer, vol. 137(2), pages 277-295, May.
  • Handle: RePEc:spr:joptap:v:137:y:2008:i:2:d:10.1007_s10957-008-9358-6
    DOI: 10.1007/s10957-008-9358-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-008-9358-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-008-9358-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Steven A. Gabriel & David Bernstein, 1997. "The Traffic Equilibrium Problem with Nonadditive Path Costs," Transportation Science, INFORMS, vol. 31(4), pages 337-348, November.
    2. B. Chen, 2001. "Error Bounds for R0-Type and Monotone Nonlinear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 108(2), pages 297-316, February.
    3. Xiaojun Chen & Masao Fukushima, 2005. "Expected Residual Minimization Method for Stochastic Linear Complementarity Problems," Mathematics of Operations Research, INFORMS, vol. 30(4), pages 1022-1038, November.
    4. M. Seetharama Gowda & Jong-Shi Pang, 1992. "On Solution Stability of the Linear Complementarity Problem," Mathematics of Operations Research, INFORMS, vol. 17(1), pages 77-83, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liyan Xu & Bo Yu, 2014. "CVaR-constrained stochastic programming reformulation for stochastic nonlinear complementarity problems," Computational Optimization and Applications, Springer, vol. 58(2), pages 483-501, June.
    2. M. J. Luo & G. H. Lin, 2009. "Expected Residual Minimization Method for Stochastic Variational Inequality Problems," Journal of Optimization Theory and Applications, Springer, vol. 140(1), pages 103-116, January.
    3. Zhang, Chao & Chen, Xiaojun & Sumalee, Agachai, 2011. "Robust Wardrop's user equilibrium assignment under stochastic demand and supply: Expected residual minimization approach," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 534-552, March.
    4. Min Li & Chao Zhang, 2020. "Two-Stage Stochastic Variational Inequality Arising from Stochastic Programming," Journal of Optimization Theory and Applications, Springer, vol. 186(1), pages 324-343, July.
    5. M. J. Luo & G. H. Lin, 2009. "Convergence Results of the ERM Method for Nonlinear Stochastic Variational Inequality Problems," Journal of Optimization Theory and Applications, Springer, vol. 142(3), pages 569-581, September.
    6. Fang Lu & Shengjie Li & Jing Yang, 2015. "Convergence analysis of weighted expected residual method for nonlinear stochastic variational inequality problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 82(2), pages 229-242, October.
    7. Lu, Fang & Li, Sheng-jie, 2015. "Method of weighted expected residual for solving stochastic variational inequality problems," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 651-663.
    8. M. Wang & M. M. Ali, 2010. "Stochastic Nonlinear Complementarity Problems: Stochastic Programming Reformulation and Penalty-Based Approximation Method," Journal of Optimization Theory and Applications, Springer, vol. 144(3), pages 597-614, March.
    9. Lin, Gui-Hua & Zhang, Dali & Liang, Yan-Chao, 2013. "Stochastic multiobjective problems with complementarity constraints and applications in healthcare management," European Journal of Operational Research, Elsevier, vol. 226(3), pages 461-470.
    10. Xie, Chi & Liu, Zugang, 2014. "On the stochastic network equilibrium with heterogeneous choice inertia," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 90-109.
    11. Ming-Zheng Wang & M. Ali, 2014. "On the ERM formulation and a stochastic approximation algorithm of the stochastic- $$R_0$$ R 0 EVLCP," Annals of Operations Research, Springer, vol. 217(1), pages 513-534, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Chao & Chen, Xiaojun & Sumalee, Agachai, 2011. "Robust Wardrop's user equilibrium assignment under stochastic demand and supply: Expected residual minimization approach," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 534-552, March.
    2. G. L. Zhou & L. Caccetta, 2008. "Feasible Semismooth Newton Method for a Class of Stochastic Linear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 379-392, November.
    3. N. H. Xiu & J. Z. Zhang, 2002. "Global Projection-Type Error Bounds for General Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 112(1), pages 213-228, January.
    4. M. Wang & M. M. Ali, 2010. "Stochastic Nonlinear Complementarity Problems: Stochastic Programming Reformulation and Penalty-Based Approximation Method," Journal of Optimization Theory and Applications, Springer, vol. 144(3), pages 597-614, March.
    5. Karan N. Chadha & Ankur A. Kulkarni, 2022. "On independent cliques and linear complementarity problems," Indian Journal of Pure and Applied Mathematics, Springer, vol. 53(4), pages 1036-1057, December.
    6. van der Laan, G. & Talman, A.J.J. & Yang, Z.F., 2005. "Computing Integral Solutions of Complementarity Problems," Other publications TiSEM b8e0c74e-2219-4ab0-99a2-0, Tilburg University, School of Economics and Management.
    7. Hoang Ngoc Tuan, 2015. "Boundedness of a Type of Iterative Sequences in Two-Dimensional Quadratic Programming," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 234-245, January.
    8. Xiao Wang & Xinzhen Zhang & Guangming Zhou, 2020. "SDP relaxation algorithms for $$\mathbf {P}(\mathbf {P}_0)$$P(P0)-tensor detection," Computational Optimization and Applications, Springer, vol. 75(3), pages 739-752, April.
    9. M. J. Luo & G. H. Lin, 2009. "Expected Residual Minimization Method for Stochastic Variational Inequality Problems," Journal of Optimization Theory and Applications, Springer, vol. 140(1), pages 103-116, January.
    10. Zhang, Yongxiong & Zheng, Hua & Lu, Xiaoping & Vong, Seakweng, 2023. "Modulus-based synchronous multisplitting iteration methods without auxiliary variable for solving vertical linear complementarity problems," Applied Mathematics and Computation, Elsevier, vol. 458(C).
    11. Guo-qiang Wang & Yu-jing Yue & Xin-zhong Cai, 2009. "Weighted-path-following interior-point algorithm to monotone mixed linear complementarity problem," Fuzzy Information and Engineering, Springer, vol. 1(4), pages 435-445, December.
    12. van der Laan, Gerard & Talman, Dolf & Yang, Zaifu, 2011. "Solving discrete systems of nonlinear equations," European Journal of Operational Research, Elsevier, vol. 214(3), pages 493-500, November.
    13. E. Nikolova & N. E. Stier-Moses, 2014. "A Mean-Risk Model for the Traffic Assignment Problem with Stochastic Travel Times," Operations Research, INFORMS, vol. 62(2), pages 366-382, April.
    14. E. Demidenko, 2008. "Criteria for Unconstrained Global Optimization," Journal of Optimization Theory and Applications, Springer, vol. 136(3), pages 375-395, March.
    15. R. B. Bapat & S. K. Neogy, 2016. "On a quadratic programming problem involving distances in trees," Annals of Operations Research, Springer, vol. 243(1), pages 365-373, August.
    16. Fang Lu & Shengjie Li & Jing Yang, 2015. "Convergence analysis of weighted expected residual method for nonlinear stochastic variational inequality problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 82(2), pages 229-242, October.
    17. Ehrgott, Matthias & Wang, Judith Y.T. & Watling, David P., 2015. "On multi-objective stochastic user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 704-717.
    18. Zheng, Hua & Vong, Seakweng & Liu, Ling, 2019. "A direct preconditioned modulus-based iteration method for solving nonlinear complementarity problems of H-matrices," Applied Mathematics and Computation, Elsevier, vol. 353(C), pages 396-405.
    19. Fernando Ordóñez & Nicolás E. Stier-Moses, 2010. "Wardrop Equilibria with Risk-Averse Users," Transportation Science, INFORMS, vol. 44(1), pages 63-86, February.
    20. Zheng-Hai Huang & Yu-Fan Li & Yong Wang, 2023. "A fixed point iterative method for tensor complementarity problems with the implicit Z-tensors," Journal of Global Optimization, Springer, vol. 86(2), pages 495-520, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:137:y:2008:i:2:d:10.1007_s10957-008-9358-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.