IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v78y2021i2d10.1007_s10589-020-00245-4.html
   My bibliography  Save this article

Nonconvex robust programming via value-function optimization

Author

Listed:
  • Ying Cui

    (University of Minnesota)

  • Ziyu He

    (University of Southern California)

  • Jong-Shi Pang

    (University of Southern California)

Abstract

Convex programming based robust optimization is an active research topic in the past two decades, partially because of its computational tractability for many classes of optimization problems and uncertainty sets. However, many problems arising from modern operations research and statistical learning applications are nonconvex even in the nominal case, let alone their robust counterpart. In this paper, we introduce a systematic approach for tackling the nonconvexity of the robust optimization problems that is usually coupled with the nonsmoothness of the objective function brought by the worst-case value function. A majorization-minimization algorithm is presented to solve the penalized min-max formulation of the robustified problem that deterministically generates a “better” solution compared with the starting point (that is usually chosen as an unrobustfied optimal solution). A generalized saddle-point theorem regarding the directional stationarity is established and a game-theoretic interpretation of the computed solutions is provided. Numerical experiments show that the computed solutions of the nonconvex robust optimization problems are less sensitive to the data perturbation compared with the unrobustfied ones.

Suggested Citation

  • Ying Cui & Ziyu He & Jong-Shi Pang, 2021. "Nonconvex robust programming via value-function optimization," Computational Optimization and Applications, Springer, vol. 78(2), pages 411-450, March.
  • Handle: RePEc:spr:coopap:v:78:y:2021:i:2:d:10.1007_s10589-020-00245-4
    DOI: 10.1007/s10589-020-00245-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-020-00245-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-020-00245-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dimitris Bertsimas & Omid Nohadani & Kwong Meng Teo, 2010. "Robust Optimization for Unconstrained Simulation-Based Problems," Operations Research, INFORMS, vol. 58(1), pages 161-178, February.
    2. Jing Hu & John Mitchell & Jong-Shi Pang & Bin Yu, 2012. "On linear programs with linear complementarity constraints," Journal of Global Optimization, Springer, vol. 53(1), pages 29-51, May.
    3. Dimitris Bertsimas & Omid Nohadani & Kwong Meng Teo, 2010. "Nonconvex Robust Optimization for Problems with Constraints," INFORMS Journal on Computing, INFORMS, vol. 22(1), pages 44-58, February.
    4. R.H. Tütüncü & M. Koenig, 2004. "Robust Asset Allocation," Annals of Operations Research, Springer, vol. 132(1), pages 157-187, November.
    5. Xiaojun Chen & Masao Fukushima, 2005. "Expected Residual Minimization Method for Stochastic Linear Complementarity Problems," Mathematics of Operations Research, INFORMS, vol. 30(4), pages 1022-1038, November.
    6. A. L. Soyster, 1973. "Technical Note—Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming," Operations Research, INFORMS, vol. 21(5), pages 1154-1157, October.
    7. Francisco Facchinei & Jong-Shi Pang & Gesualdo Scutari, 2014. "Non-cooperative games with minmax objectives," Computational Optimization and Applications, Springer, vol. 59(1), pages 85-112, October.
    8. Gorissen, Bram L. & Yanıkoğlu, İhsan & den Hertog, Dick, 2015. "A practical guide to robust optimization," Omega, Elsevier, vol. 53(C), pages 124-137.
    9. Wu Li & Ivan Singer, 1998. "Global Error Bounds for Convex Multifunctions and Applications," Mathematics of Operations Research, INFORMS, vol. 23(2), pages 443-462, May.
    10. Marcus Ang & Jie Sun & Qiang Yao, 2018. "On the dual representation of coherent risk measures," Annals of Operations Research, Springer, vol. 262(1), pages 29-46, March.
    11. D. Goldfarb & G. Iyengar, 2003. "Robust Portfolio Selection Problems," Mathematics of Operations Research, INFORMS, vol. 28(1), pages 1-38, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gianfranco Guastaroba & Gautam Mitra & M Grazia Speranza, 2011. "Investigating the effectiveness of robust portfolio optimization techniques," Journal of Asset Management, Palgrave Macmillan, vol. 12(4), pages 260-280, September.
    2. Kramer, Anja & Krebs, Vanessa & Schmidt, Martin, 2021. "Strictly and Γ-robust counterparts of electricity market models: Perfect competition and Nash–Cournot equilibria," Operations Research Perspectives, Elsevier, vol. 8(C).
    3. Jang Ho Kim & Woo Chang Kim & Frank J. Fabozzi, 2014. "Recent Developments in Robust Portfolios with a Worst-Case Approach," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 103-121, April.
    4. Dai, Zhifeng & Wang, Fei, 2019. "Sparse and robust mean–variance portfolio optimization problems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1371-1378.
    5. Plachel, Lukas, 2019. "A unified model for regularized and robust portfolio optimization," Journal of Economic Dynamics and Control, Elsevier, vol. 109(C).
    6. Ban Kawas & Aurelie Thiele, 2017. "Log-robust portfolio management with parameter ambiguity," Computational Management Science, Springer, vol. 14(2), pages 229-256, April.
    7. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2021. "Robust Portfolio Selection Problems: A Comprehensive Review," Papers 2103.13806, arXiv.org, revised Jan 2022.
    8. Vaughn Gambeta & Roy Kwon, 2020. "Risk Return Trade-Off in Relaxed Risk Parity Portfolio Optimization," JRFM, MDPI, vol. 13(10), pages 1-28, October.
    9. Gabriele Eichfelder & Corinna Krüger & Anita Schöbel, 2017. "Decision uncertainty in multiobjective optimization," Journal of Global Optimization, Springer, vol. 69(2), pages 485-510, October.
    10. Maillet, Bertrand & Tokpavi, Sessi & Vaucher, Benoit, 2015. "Global minimum variance portfolio optimisation under some model risk: A robust regression-based approach," European Journal of Operational Research, Elsevier, vol. 244(1), pages 289-299.
    11. Juan F. Monge & Mercedes Landete & Jos'e L. Ruiz, 2016. "Sharpe portfolio using a cross-efficiency evaluation," Papers 1610.00937, arXiv.org, revised Oct 2016.
    12. Victor DeMiguel & Francisco J. Nogales, 2009. "Portfolio Selection with Robust Estimation," Operations Research, INFORMS, vol. 57(3), pages 560-577, June.
    13. Sun, Hao & Yang, Jun & Yang, Chao, 2019. "A robust optimization approach to multi-interval location-inventory and recharging planning for electric vehicles," Omega, Elsevier, vol. 86(C), pages 59-75.
    14. Antonio G. Martín & Manuel Díaz-Madroñero & Josefa Mula, 2020. "Master production schedule using robust optimization approaches in an automobile second-tier supplier," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 143-166, March.
    15. Hakan Kaya, 2017. "Managing ambiguity in asset allocation," Journal of Asset Management, Palgrave Macmillan, vol. 18(3), pages 163-187, May.
    16. Khoirunnisa Rohadatul Aisy Muslihin & Endang Rusyaman & Diah Chaerani, 2022. "Conic Duality for Multi-Objective Robust Optimization Problem," Mathematics, MDPI, vol. 10(21), pages 1-22, October.
    17. Mainik, Georg & Mitov, Georgi & Rüschendorf, Ludger, 2015. "Portfolio optimization for heavy-tailed assets: Extreme Risk Index vs. Markowitz," Journal of Empirical Finance, Elsevier, vol. 32(C), pages 115-134.
    18. Geng Deng & Tim Dulaney & Craig McCann & Olivia Wang, 2013. "Robust portfolio optimization with Value-at-Risk-adjusted Sharpe ratios," Journal of Asset Management, Palgrave Macmillan, vol. 14(5), pages 293-305, October.
    19. Georg Mainik & Georgi Mitov & Ludger Ruschendorf, 2015. "Portfolio optimization for heavy-tailed assets: Extreme Risk Index vs. Markowitz," Papers 1505.04045, arXiv.org.
    20. Maria Scutellà & Raffaella Recchia, 2013. "Robust portfolio asset allocation and risk measures," Annals of Operations Research, Springer, vol. 204(1), pages 145-169, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:78:y:2021:i:2:d:10.1007_s10589-020-00245-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.