IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v137y2008i1d10.1007_s10957-007-9323-9.html
   My bibliography  Save this article

Global Maximization of a Generalized Concave Multiplicative Function

Author

Listed:
  • H. P. Benson

    (University of Florida)

Abstract

This article presents a branch-and-bound algorithm for globally solving the problem (P) of maximizing a generalized concave multiplicative function over a compact convex set. Since problem (P) does not seem to have been studied previously, the algorithm is apparently the first algorithm to be proposed for solving this problem. It works by globally solving a problem (P1) equivalent to problem (P). The branch-and-bound search undertaken by the algorithm uses rectangular partitioning and takes place in a space which typically has a much smaller dimension than the space to which the decision variables of problem (P) belong. Convergence of the algorithm is shown; computational considerations and benefits for users of the algorithm are given. A sample problem is also solved.

Suggested Citation

  • H. P. Benson, 2008. "Global Maximization of a Generalized Concave Multiplicative Function," Journal of Optimization Theory and Applications, Springer, vol. 137(1), pages 105-120, April.
  • Handle: RePEc:spr:joptap:v:137:y:2008:i:1:d:10.1007_s10957-007-9323-9
    DOI: 10.1007/s10957-007-9323-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-007-9323-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-007-9323-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Raghavachari, 1969. "On Connections Between Zero-One Integer Programming and Concave Programming Under Linear Constraints," Operations Research, INFORMS, vol. 17(4), pages 680-684, August.
    2. Faiz A. Al-Khayyal & James E. Falk, 1983. "Jointly Constrained Biconvex Programming," Mathematics of Operations Research, INFORMS, vol. 8(2), pages 273-286, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peiping Shen & Dianxiao Wu & Kaimin Wang, 2023. "Globally minimizing a class of linear multiplicative forms via simplicial branch-and-bound," Journal of Global Optimization, Springer, vol. 86(2), pages 303-321, June.
    2. Rúbia Oliveira & Paulo Ferreira, 2010. "An outcome space approach for generalized convex multiplicative programs," Journal of Global Optimization, Springer, vol. 47(1), pages 107-118, May.
    3. Alireza M. Ashtiani & Paulo A. V. Ferreira, 2011. "On the Solution of Generalized Multiplicative Extremum Problems," Journal of Optimization Theory and Applications, Springer, vol. 149(2), pages 411-419, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tao Tan & Yanyan Li & Xingsi Li, 2011. "A Smoothing Method for Zero–One Constrained Extremum Problems," Journal of Optimization Theory and Applications, Springer, vol. 150(1), pages 65-77, July.
    2. N. V. Thoai, 2000. "Duality Bound Method for the General Quadratic Programming Problem with Quadratic Constraints," Journal of Optimization Theory and Applications, Springer, vol. 107(2), pages 331-354, November.
    3. Evrim Dalkiran & Hanif Sherali, 2013. "Theoretical filtering of RLT bound-factor constraints for solving polynomial programming problems to global optimality," Journal of Global Optimization, Springer, vol. 57(4), pages 1147-1172, December.
    4. Gabriele Eichfelder & Peter Kirst & Laura Meng & Oliver Stein, 2021. "A general branch-and-bound framework for continuous global multiobjective optimization," Journal of Global Optimization, Springer, vol. 80(1), pages 195-227, May.
    5. Peiping Shen & Kaimin Wang & Ting Lu, 2020. "Outer space branch and bound algorithm for solving linear multiplicative programming problems," Journal of Global Optimization, Springer, vol. 78(3), pages 453-482, November.
    6. Sonia Cafieri & Jon Lee & Leo Liberti, 2010. "On convex relaxations of quadrilinear terms," Journal of Global Optimization, Springer, vol. 47(4), pages 661-685, August.
    7. Keith Zorn & Nikolaos Sahinidis, 2014. "Global optimization of general nonconvex problems with intermediate polynomial substructures," Journal of Global Optimization, Springer, vol. 59(2), pages 673-693, July.
    8. Tsao, Yu-Chung & Lu, Jye-Chyi & An, Na & Al-Khayyal, Faiz & Lu, Richard W. & Han, Guanghua, 2014. "Retailer shelf-space management with trade allowance: A Stackelberg game between retailer and manufacturers," International Journal of Production Economics, Elsevier, vol. 148(C), pages 133-144.
    9. Al-Khayyal, Faiz & Hwang, Seung-June, 2007. "Inventory constrained maritime routing and scheduling for multi-commodity liquid bulk, Part I: Applications and model," European Journal of Operational Research, Elsevier, vol. 176(1), pages 106-130, January.
    10. Manuel Ruiz & Olivier Briant & Jean-Maurice Clochard & Bernard Penz, 2013. "Large-scale standard pooling problems with constrained pools and fixed demands," Journal of Global Optimization, Springer, vol. 56(3), pages 939-956, July.
    11. Marco Locatelli, 2016. "Polyhedral subdivisions and functional forms for the convex envelopes of bilinear, fractional and other bivariate functions over general polytopes," Journal of Global Optimization, Springer, vol. 66(4), pages 629-668, December.
    12. Hezhi Luo & Xiaodong Ding & Jiming Peng & Rujun Jiang & Duan Li, 2021. "Complexity Results and Effective Algorithms for Worst-Case Linear Optimization Under Uncertainties," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 180-197, January.
    13. Kristianto, Yohanes & Helo, Petri, 2014. "Product architecture modularity implications for operations economy of green supply chains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 128-145.
    14. Juan P. Ruiz & Ignacio E. Grossmann, 2017. "Global optimization of non-convex generalized disjunctive programs: a review on reformulations and relaxation techniques," Journal of Global Optimization, Springer, vol. 67(1), pages 43-58, January.
    15. Wang, Yadong & Meng, Qiang & Du, Yuquan, 2015. "Liner container seasonal shipping revenue management," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 141-161.
    16. Luathep, Paramet & Sumalee, Agachai & Lam, William H.K. & Li, Zhi-Chun & Lo, Hong K., 2011. "Global optimization method for mixed transportation network design problem: A mixed-integer linear programming approach," Transportation Research Part B: Methodological, Elsevier, vol. 45(5), pages 808-827, June.
    17. E Bustamante-Cedeño & S Arora, 2008. "Stochastic and minimum regret formulations for transmission network expansion planning under uncertainties," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(11), pages 1547-1556, November.
    18. Kristianto, Yohanes & Helo, Petri, 2015. "Reprint of “Product architecture modularity implications for operations economy of green supply chains”," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 74(C), pages 63-80.
    19. Marco Locatelli, 2014. "A technique to derive the analytical form of convex envelopes for some bivariate functions," Journal of Global Optimization, Springer, vol. 59(2), pages 477-501, July.
    20. Stefano Lucidi & Francesco Rinaldi, 2010. "An Exact Penalty Global Optimization Approach for Mixed-Integer Programming Problems," DIS Technical Reports 2010-17, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:137:y:2008:i:1:d:10.1007_s10957-007-9323-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.