IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v67y2017i1d10.1007_s10898-016-0401-0.html
   My bibliography  Save this article

Global optimization of non-convex generalized disjunctive programs: a review on reformulations and relaxation techniques

Author

Listed:
  • Juan P. Ruiz

    (Soteica Visual Mesa LLC)

  • Ignacio E. Grossmann

    (Carnegie Mellon University)

Abstract

In this paper we present a review on the latest advances in logic-based solution methods for the global optimization of non-convex generalized disjunctive programs. Considering that the performance of these methods relies on the quality of the relaxations that can be generated, our focus is on the discussion of a general framework to find strong relaxations. We identify two main sources of non-convexities that any methodology to find relaxations should account for. Namely, the one arising from the non-convex functions and the one arising from the disjunctive set. We review the work that has been done on these two fronts with special emphasis on the latter. We then describe different logic-based optimization techniques that make use of the relaxation framework and its impact through a set of numerical examples typically encountered in Process Systems Engineering. Finally, we outline challenges and future lines of work in this area.

Suggested Citation

  • Juan P. Ruiz & Ignacio E. Grossmann, 2017. "Global optimization of non-convex generalized disjunctive programs: a review on reformulations and relaxation techniques," Journal of Global Optimization, Springer, vol. 67(1), pages 43-58, January.
  • Handle: RePEc:spr:jglopt:v:67:y:2017:i:1:d:10.1007_s10898-016-0401-0
    DOI: 10.1007/s10898-016-0401-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-016-0401-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-016-0401-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ruiz, Juan P. & Grossmann, Ignacio E., 2012. "A hierarchy of relaxations for nonlinear convex generalized disjunctive programming," European Journal of Operational Research, Elsevier, vol. 218(1), pages 38-47.
    2. Faiz A. Al-Khayyal & James E. Falk, 1983. "Jointly Constrained Biconvex Programming," Mathematics of Operations Research, INFORMS, vol. 8(2), pages 273-286, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yinrun Lyu & Li Chen & Changyou Zhang & Dacheng Qu & Nasro Min-Allah & Yongji Wang, 2018. "An interleaved depth-first search method for the linear optimization problem with disjunctive constraints," Journal of Global Optimization, Springer, vol. 70(4), pages 737-756, April.
    2. Harsha Nagarajan & Mowen Lu & Site Wang & Russell Bent & Kaarthik Sundar, 2019. "An adaptive, multivariate partitioning algorithm for global optimization of nonconvex programs," Journal of Global Optimization, Springer, vol. 74(4), pages 639-675, August.
    3. Jian, Jinbao & Pan, Shanshan & Yang, Linfeng, 2019. "Solution for short-term hydrothermal scheduling with a logarithmic size mixed-integer linear programming formulation," Energy, Elsevier, vol. 171(C), pages 770-784.
    4. Daniel Jornada & V. Jorge Leon, 2020. "Filtering Algorithms for Biobjective Mixed Binary Linear Optimization Problems with a Multiple-Choice Constraint," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 57-73, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. İhsan Yanıkoğlu & Erinç Albey & Serkan Okçuoğlu, 2022. "Robust Parameter Design and Optimization for Quality Engineering," SN Operations Research Forum, Springer, vol. 3(1), pages 1-36, March.
    2. Novas, Juan M. & Ramello, Juan Ignacio & Rodríguez, María Analía, 2020. "Generalized disjunctive programming models for the truck loading problem: A case study from the non-alcoholic beverages industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    3. Eli Towle & James Luedtke, 2018. "New solution approaches for the maximum-reliability stochastic network interdiction problem," Computational Management Science, Springer, vol. 15(3), pages 455-477, October.
    4. N. V. Thoai, 2000. "Duality Bound Method for the General Quadratic Programming Problem with Quadratic Constraints," Journal of Optimization Theory and Applications, Springer, vol. 107(2), pages 331-354, November.
    5. Radu Baltean-Lugojan & Ruth Misener, 2018. "Piecewise parametric structure in the pooling problem: from sparse strongly-polynomial solutions to NP-hardness," Journal of Global Optimization, Springer, vol. 71(4), pages 655-690, August.
    6. Evrim Dalkiran & Hanif Sherali, 2013. "Theoretical filtering of RLT bound-factor constraints for solving polynomial programming problems to global optimality," Journal of Global Optimization, Springer, vol. 57(4), pages 1147-1172, December.
    7. M. M. Faruque Hasan, 2018. "An edge-concave underestimator for the global optimization of twice-differentiable nonconvex problems," Journal of Global Optimization, Springer, vol. 71(4), pages 735-752, August.
    8. Gabriele Eichfelder & Peter Kirst & Laura Meng & Oliver Stein, 2021. "A general branch-and-bound framework for continuous global multiobjective optimization," Journal of Global Optimization, Springer, vol. 80(1), pages 195-227, May.
    9. Sonia Cafieri & Jon Lee & Leo Liberti, 2010. "On convex relaxations of quadrilinear terms," Journal of Global Optimization, Springer, vol. 47(4), pages 661-685, August.
    10. Keith Zorn & Nikolaos Sahinidis, 2014. "Global optimization of general nonconvex problems with intermediate polynomial substructures," Journal of Global Optimization, Springer, vol. 59(2), pages 673-693, July.
    11. Tsao, Yu-Chung & Lu, Jye-Chyi & An, Na & Al-Khayyal, Faiz & Lu, Richard W. & Han, Guanghua, 2014. "Retailer shelf-space management with trade allowance: A Stackelberg game between retailer and manufacturers," International Journal of Production Economics, Elsevier, vol. 148(C), pages 133-144.
    12. Al-Khayyal, Faiz & Hwang, Seung-June, 2007. "Inventory constrained maritime routing and scheduling for multi-commodity liquid bulk, Part I: Applications and model," European Journal of Operational Research, Elsevier, vol. 176(1), pages 106-130, January.
    13. Marcia Fampa & Jon Lee, 2021. "Convexification of bilinear forms through non-symmetric lifting," Journal of Global Optimization, Springer, vol. 80(2), pages 287-305, June.
    14. Peter Kirst & Fabian Rigterink & Oliver Stein, 2017. "Global optimization of disjunctive programs," Journal of Global Optimization, Springer, vol. 69(2), pages 283-307, October.
    15. Manuel Ruiz & Olivier Briant & Jean-Maurice Clochard & Bernard Penz, 2013. "Large-scale standard pooling problems with constrained pools and fixed demands," Journal of Global Optimization, Springer, vol. 56(3), pages 939-956, July.
    16. Michelle L. Blom & Christina N. Burt & Adrian R. Pearce & Peter J. Stuckey, 2014. "A Decomposition-Based Heuristic for Collaborative Scheduling in a Network of Open-Pit Mines," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 658-676, November.
    17. Jochen Gorski & Frank Pfeuffer & Kathrin Klamroth, 2007. "Biconvex sets and optimization with biconvex functions: a survey and extensions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 66(3), pages 373-407, December.
    18. J Irion & J-C Lu & F A Al-Khayyal & Y-C Tsao, 2011. "A hierarchical decomposition approach to retail shelf space management and assortment decisions," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(10), pages 1861-1870, October.
    19. Dimitri J. Papageorgiou & Francisco Trespalacios, 2018. "Pseudo basic steps: bound improvement guarantees from Lagrangian decomposition in convex disjunctive programming," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(1), pages 55-83, March.
    20. Can Li & Ignacio E. Grossmann, 2019. "A finite $$\epsilon $$ϵ-convergence algorithm for two-stage stochastic convex nonlinear programs with mixed-binary first and second-stage variables," Journal of Global Optimization, Springer, vol. 75(4), pages 921-947, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:67:y:2017:i:1:d:10.1007_s10898-016-0401-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.