IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v59y2014i2p673-693.html
   My bibliography  Save this article

Global optimization of general nonconvex problems with intermediate polynomial substructures

Author

Listed:
  • Keith Zorn
  • Nikolaos Sahinidis

Abstract

This work considers the global optimization of general nonconvex nonlinear and mixed-integer nonlinear programming problems with underlying polynomial substructures. We incorporate linear cutting planes inspired by reformulation-linearization techniques to produce tight subproblem formulations that exploit these underlying structures. These cutting plane strategies simultaneously convexify linear and nonlinear terms from multiple constraints and are highly effective at tightening standard linear programming relaxations generated by sequential factorable programming techniques. Because the number of available cutting planes increases exponentially with the number of variables, we implement cut filtering and selection strategies to prevent an exponential increase in relaxation size. We introduce algorithms for polynomial substructure detection, cutting plane identification, cut filtering, and cut selection and embed the proposed implementation in BARON at every node in the branch-and-bound tree. A computational study including randomly generated problems of varying size and complexity demonstrates that the exploitation of underlying polynomial substructures significantly reduces computational time, branch-and-bound tree size, and required memory. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • Keith Zorn & Nikolaos Sahinidis, 2014. "Global optimization of general nonconvex problems with intermediate polynomial substructures," Journal of Global Optimization, Springer, vol. 59(2), pages 673-693, July.
  • Handle: RePEc:spr:jglopt:v:59:y:2014:i:2:p:673-693
    DOI: 10.1007/s10898-014-0190-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-014-0190-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-014-0190-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Warren P. Adams & Hanif D. Sherali, 1990. "Linearization Strategies for a Class of Zero-One Mixed Integer Programming Problems," Operations Research, INFORMS, vol. 38(2), pages 217-226, April.
    2. Mohit Tawarmalani & Jean-Philippe P. Richard & Chuanhui Xiong, 2010. "Explicit convex and concave envelopes through polyhedral subdivisions with Unstable Equilibria," Purdue University Economics Working Papers 1234, Purdue University, Department of Economics.
    3. Faiz A. Al-Khayyal & James E. Falk, 1983. "Jointly Constrained Biconvex Programming," Mathematics of Operations Research, INFORMS, vol. 8(2), pages 273-286, May.
    4. Dimitris Bertsimas & Ioana Popescu, 2002. "On the Relation Between Option and Stock Prices: A Convex Optimization Approach," Operations Research, INFORMS, vol. 50(2), pages 358-374, April.
    5. Hanif Sherali & Evrim Dalkiran, 2011. "Combined bound-grid-factor constraints for enhancing RLT relaxations for polynomial programs," Journal of Global Optimization, Springer, vol. 51(3), pages 377-393, November.
    6. Campbell Harvey & John Liechty & Merrill Liechty & Peter Muller, 2010. "Portfolio selection with higher moments," Quantitative Finance, Taylor & Francis Journals, vol. 10(5), pages 469-485.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alberto Del Pia & Aida Khajavirad, 2017. "A Polyhedral Study of Binary Polynomial Programs," Mathematics of Operations Research, INFORMS, vol. 42(2), pages 389-410, May.
    2. Boukouvala, Fani & Misener, Ruth & Floudas, Christodoulos A., 2016. "Global optimization advances in Mixed-Integer Nonlinear Programming, MINLP, and Constrained Derivative-Free Optimization, CDFO," European Journal of Operational Research, Elsevier, vol. 252(3), pages 701-727.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Evrim Dalkiran & Hanif Sherali, 2013. "Theoretical filtering of RLT bound-factor constraints for solving polynomial programming problems to global optimality," Journal of Global Optimization, Springer, vol. 57(4), pages 1147-1172, December.
    2. Rand Kwong Yew Low, 2018. "Vine copulas: modelling systemic risk and enhancing higher‐moment portfolio optimisation," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 58(S1), pages 423-463, November.
    3. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    4. Georgia Perakis & Guillaume Roels, 2008. "Regret in the Newsvendor Model with Partial Information," Operations Research, INFORMS, vol. 56(1), pages 188-203, February.
    5. Chiang, Thomas C., 2019. "Empirical analysis of intertemporal relations between downside risks and expected returns—Evidence from Asian markets," Research in International Business and Finance, Elsevier, vol. 47(C), pages 264-278.
    6. Jeong, Jaehee & Premsankar, Gopika & Ghaddar, Bissan & Tarkoma, Sasu, 2024. "A robust optimization approach for placement of applications in edge computing considering latency uncertainty," Omega, Elsevier, vol. 126(C).
    7. Nathan Lassance & Victor DeMiguel & Frédéric Vrins, 2022. "Optimal Portfolio Diversification via Independent Component Analysis," Operations Research, INFORMS, vol. 70(1), pages 55-72, January.
    8. Rui Pedro Brito & Hélder Sebastião & Pedro Godinho, 2016. "Efficient skewness/semivariance portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 17(5), pages 331-346, September.
    9. Roy Cerqueti & Pierpaolo D’Urso & Livia Giovanni & Raffaele Mattera & Vincenzina Vitale, 2024. "Fuzzy clustering of time series based on weighted conditional higher moments," Computational Statistics, Springer, vol. 39(6), pages 3091-3114, September.
    10. John D. Burger & Francis E. Warnock, 2007. "Foreign participation in local currency bond markets," Review of Financial Economics, John Wiley & Sons, vol. 16(3), pages 291-304.
    11. Valeria V. Lakshina, 2019. "Do Portfolio Investors Need To Consider The Asymmetry Of Returns On The Russian Stock Market?," HSE Working papers WP BRP 75/FE/2019, National Research University Higher School of Economics.
    12. Osman, Hany & Demirli, Kudret, 2010. "A bilinear goal programming model and a modified Benders decomposition algorithm for supply chain reconfiguration and supplier selection," International Journal of Production Economics, Elsevier, vol. 124(1), pages 97-105, March.
    13. Rostami, Borzou & Malucelli, Federico & Belotti, Pietro & Gualandi, Stefano, 2016. "Lower bounding procedure for the asymmetric quadratic traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 253(3), pages 584-592.
    14. Lassance, Nathan & Vrins, Frédéric, 2021. "Portfolio selection with parsimonious higher comoments estimation," Journal of Banking & Finance, Elsevier, vol. 126(C).
    15. Jarno Talponen, 2013. "Matching distributions: Asset pricing with density shape correction," Papers 1312.4227, arXiv.org, revised Mar 2018.
    16. Y. Lemp'eri`ere & C. Deremble & T. T. Nguyen & P. Seager & M. Potters & J. P. Bouchaud, 2014. "Risk Premia: Asymmetric Tail Risks and Excess Returns," Papers 1409.7720, arXiv.org, revised Oct 2015.
    17. İhsan Yanıkoğlu & Erinç Albey & Serkan Okçuoğlu, 2022. "Robust Parameter Design and Optimization for Quality Engineering," SN Operations Research Forum, Springer, vol. 3(1), pages 1-36, March.
    18. Hautsch, Nikolaus & Voigt, Stefan, 2019. "Large-scale portfolio allocation under transaction costs and model uncertainty," Journal of Econometrics, Elsevier, vol. 212(1), pages 221-240.
    19. Bernardi, Mauro & Catania, Leopoldo, 2018. "Portfolio optimisation under flexible dynamic dependence modelling," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 1-18.
    20. Rui Pedro Brito & Hélder Sebastião & Pedro Godinho, 2016. "Efficient skewness/semivariance portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 17(5), pages 331-346, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:59:y:2014:i:2:p:673-693. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.