IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v90y2024i3d10.1007_s10898-024-01416-x.html
   My bibliography  Save this article

A method based on parametric convex programming for solving convex multiplicative programming problem

Author

Listed:
  • Yunchol Jong

    (University of Science)

  • Yongjin Kim

    (University of Science)

  • Hyonchol Kim

    (University of Science)

Abstract

We propose a new parametric approach to convex multiplicative programming problem. This problem is nonconvex optimization problem with a lot of practical applications. Compared with preceding methods based on branch-and-bound procedure and other approaches, the idea of our method is to reduce the original nonconvex problem to a parametric convex programming problem having parameters in objective functions. To find parameters corresponding to the optimal solution of the original problem, a system of nonlinear equations which the parameters should satisfy is studied. Then, the system is solved by a Newton-like algorithm, which needs to solve a convex programming problem in each iteration and has global linear and local superlinear/quadratic rate of convergence under some assumptions. Moreover, under some mild assumptions, our algorithm has a finite convergence, that is, the algorithm finds a solution after a finite number of iterations. The numerical results show that our method has much better performance than other reported methods for this class of problems.

Suggested Citation

  • Yunchol Jong & Yongjin Kim & Hyonchol Kim, 2024. "A method based on parametric convex programming for solving convex multiplicative programming problem," Journal of Global Optimization, Springer, vol. 90(3), pages 573-592, November.
  • Handle: RePEc:spr:jglopt:v:90:y:2024:i:3:d:10.1007_s10898-024-01416-x
    DOI: 10.1007/s10898-024-01416-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-024-01416-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-024-01416-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alireza M. Ashtiani & Paulo A. V. Ferreira, 2011. "On the Solution of Generalized Multiplicative Extremum Problems," Journal of Optimization Theory and Applications, Springer, vol. 149(2), pages 411-419, May.
    2. Peiping Shen & Kaimin Wang & Ting Lu, 2020. "Outer space branch and bound algorithm for solving linear multiplicative programming problems," Journal of Global Optimization, Springer, vol. 78(3), pages 453-482, November.
    3. H. P. Benson & G. M. Boger, 2000. "Outcome-Space Cutting-Plane Algorithm for Linear Multiplicative Programming," Journal of Optimization Theory and Applications, Springer, vol. 104(2), pages 301-322, February.
    4. Maranas, C. D. & Androulakis, I. P. & Floudas, C. A. & Berger, A. J. & Mulvey, J. M., 1997. "Solving long-term financial planning problems via global optimization," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1405-1425, June.
    5. Rúbia Oliveira & Paulo Ferreira, 2010. "An outcome space approach for generalized convex multiplicative programs," Journal of Global Optimization, Springer, vol. 47(1), pages 107-118, May.
    6. John M. Mulvey & Robert J. Vanderbei & Stavros A. Zenios, 1995. "Robust Optimization of Large-Scale Systems," Operations Research, INFORMS, vol. 43(2), pages 264-281, April.
    7. H. P. Benson, 2008. "Global Maximization of a Generalized Concave Multiplicative Function," Journal of Optimization Theory and Applications, Springer, vol. 137(1), pages 105-120, April.
    8. Bo Zhang & Yuelin Gao & Xia Liu & Xiaoli Huang, 2020. "Output-Space Branch-and-Bound Reduction Algorithm for a Class of Linear Multiplicative Programs," Mathematics, MDPI, vol. 8(3), pages 1-34, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, YueLin & Zhang, Bo, 2023. "Output-space branch-and-bound reduction algorithm for generalized linear fractional-multiplicative programming problem," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    2. Peiping Shen & Kaimin Wang & Ting Lu, 2020. "Outer space branch and bound algorithm for solving linear multiplicative programming problems," Journal of Global Optimization, Springer, vol. 78(3), pages 453-482, November.
    3. Peiping Shen & Dianxiao Wu & Kaimin Wang, 2023. "Globally minimizing a class of linear multiplicative forms via simplicial branch-and-bound," Journal of Global Optimization, Springer, vol. 86(2), pages 303-321, June.
    4. Boddiford, Ashley N. & Kaufman, Daniel E. & Skipper, Daphne E. & Uhan, Nelson A., 2023. "Approximating a linear multiplicative objective in watershed management optimization," European Journal of Operational Research, Elsevier, vol. 305(2), pages 547-561.
    5. Bo Zhang & Hongyu Wang & Yuelin Gao, 2024. "Output-Space Outer Approximation Branch-and-Bound Algorithm for a Class of Linear Multiplicative Programs," Journal of Optimization Theory and Applications, Springer, vol. 202(3), pages 997-1026, September.
    6. Alireza M. Ashtiani & Paulo A. V. Ferreira, 2011. "On the Solution of Generalized Multiplicative Extremum Problems," Journal of Optimization Theory and Applications, Springer, vol. 149(2), pages 411-419, May.
    7. Ashtiani, Alireza M. & Ferreira, Paulo A.V., 2015. "A branch-and-cut algorithm for a class of sum-of-ratios problems," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 596-608.
    8. Bo Zhang & Yuelin Gao & Xia Liu & Xiaoli Huang, 2020. "Output-Space Branch-and-Bound Reduction Algorithm for a Class of Linear Multiplicative Programs," Mathematics, MDPI, vol. 8(3), pages 1-34, March.
    9. Donghai Wang & Qiuhong Zhao, 2020. "A Simultaneous Optimization Model for Airport Network Slot Allocation under Uncertain Capacity," Sustainability, MDPI, vol. 12(14), pages 1-14, July.
    10. Shan Lan & John-Paul Clarke & Cynthia Barnhart, 2006. "Planning for Robust Airline Operations: Optimizing Aircraft Routings and Flight Departure Times to Minimize Passenger Disruptions," Transportation Science, INFORMS, vol. 40(1), pages 15-28, February.
    11. Khaled, Oumaima & Minoux, Michel & Mousseau, Vincent & Michel, Stéphane & Ceugniet, Xavier, 2018. "A multi-criteria repair/recovery framework for the tail assignment problem in airlines," Journal of Air Transport Management, Elsevier, vol. 68(C), pages 137-151.
    12. Irawan, Chandra Ade & Jones, Dylan & Hofman, Peter S. & Zhang, Lina, 2023. "Integrated strategic energy mix and energy generation planning with multiple sustainability criteria and hierarchical stakeholders," European Journal of Operational Research, Elsevier, vol. 308(2), pages 864-883.
    13. Hashem Omrani & Farzane Adabi & Narges Adabi, 2017. "Designing an efficient supply chain network with uncertain data: a robust optimization—data envelopment analysis approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(7), pages 816-828, July.
    14. Jihee Han & KwangSup Shin, 2016. "Evaluation mechanism for structural robustness of supply chain considering disruption propagation," International Journal of Production Research, Taylor & Francis Journals, vol. 54(1), pages 135-151, January.
    15. Tsai, Jung-Fa, 2007. "An optimization approach for supply chain management models with quantity discount policy," European Journal of Operational Research, Elsevier, vol. 177(2), pages 982-994, March.
    16. Xuejie Bai & Yankui Liu, 2016. "Robust optimization of supply chain network design in fuzzy decision system," Journal of Intelligent Manufacturing, Springer, vol. 27(6), pages 1131-1149, December.
    17. Schönlein, Michael & Makuschewitz, Thomas & Wirth, Fabian & Scholz-Reiter, Bernd, 2013. "Measurement and optimization of robust stability of multiclass queueing networks: Applications in dynamic supply chains," European Journal of Operational Research, Elsevier, vol. 229(1), pages 179-189.
    18. Antonio G. Martín & Manuel Díaz-Madroñero & Josefa Mula, 2020. "Master production schedule using robust optimization approaches in an automobile second-tier supplier," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 143-166, March.
    19. Sebastian Rachuba & Brigitte Werners, 2017. "A fuzzy multi-criteria approach for robust operating room schedules," Annals of Operations Research, Springer, vol. 251(1), pages 325-350, April.
    20. Roy, Bernard, 2010. "Robustness in operational research and decision aiding: A multi-faceted issue," European Journal of Operational Research, Elsevier, vol. 200(3), pages 629-638, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:90:y:2024:i:3:d:10.1007_s10898-024-01416-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.