IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v124y2005i1d10.1007_s10957-004-6464-y.html
   My bibliography  Save this article

Maximin Approach to the Ship Collision Avoidance Problem via Multiple-Subarc Sequential Gradient-Restoration Algorithm

Author

Listed:
  • A. Miele

    (Rice University)

  • T. Wang

    (Rice University)

Abstract

The ideal strategy for ship collision avoidance under emergency conditions is to maximize wrt the controls the timewise minimum distance between a host ship and an intruder ship. This is a maximin problem or Chebyshev problem of optimal control in which the performance index being maximinimized is the distance between the two ships. Based on the multiple-subarc sequential gradient-restoration algorithm, a new method for solving the maximin problem is developed. Key to the new method is the observation that, at the maximin point, the time derivative of the performance index must vanish. With the zero derivative condition being treated as an inner boundary condition, the maximin problem can be converted into a Bolza problem in which the performance index, evaluated at the inner boundary, is being maximized wrt the controls. In turn, the Bolza problem with an added inner boundary condition can be solved via the multiple-subarc sequential gradient-restoration algorithm (SGRA). The new method is applied to two cases of the collision avoidance problem: collision avoidance between two ships moving along the same rectilinear course and collision avoidance between two ships moving along orthogonal courses. For both cases, we are basically in the presence of a two-subarc problem, the first subarc corresponding to the avoidance phase of the maneuver and the second subarc corresponding to the recovery phase. For stiff systems, the robustness of the multiple-subarc SGRA can be enhanced via increase in the number of subarcs. For the ship collision avoidance problem, a modest increase in the number of subarcs from two to three (one subarc in the avoidance phase, two subarcs in the recovery phase) helps containing error propagation and achieving better convergence results.

Suggested Citation

  • A. Miele & T. Wang, 2005. "Maximin Approach to the Ship Collision Avoidance Problem via Multiple-Subarc Sequential Gradient-Restoration Algorithm," Journal of Optimization Theory and Applications, Springer, vol. 124(1), pages 29-53, January.
  • Handle: RePEc:spr:joptap:v:124:y:2005:i:1:d:10.1007_s10957-004-6464-y
    DOI: 10.1007/s10957-004-6464-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-004-6464-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-004-6464-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Miele & T. Wang & C. S. Chao & J. B. Dabney, 1999. "Optimal Control of a Ship for Collision Avoidance Maneuvers," Journal of Optimization Theory and Applications, Springer, vol. 103(3), pages 495-519, December.
    2. A. Miele & T. Wang & C. S. Chao & J. B. Dabney, 1999. "Optimal Control of a Ship for Course Change and Sidestep Maneuvers," Journal of Optimization Theory and Applications, Springer, vol. 103(2), pages 259-282, November.
    3. A. Miele & T. Wang, 2003. "Multiple-Subarc Gradient-Restoration Algorithm, Part 2: Application to a Multistage Launch Vehicle Design," Journal of Optimization Theory and Applications, Springer, vol. 116(1), pages 19-39, January.
    4. A. Miele & T. Wang, 2004. "New Approach To The Collision Avoidance Problem For A Ship," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 137-155.
    5. Y. Yavin & C. Frangos & T. Miloh & G. Zilman, 1997. "Collision Avoidance by a Ship with a Moving Obstacle: Computation of Feasible Command Strategies," Journal of Optimization Theory and Applications, Springer, vol. 93(1), pages 53-66, April.
    6. A. Miele & T. Wang, 2003. "Multiple-Subarc Gradient-Restoration Algorithm, Part 1: Algorithm Structure," Journal of Optimization Theory and Applications, Springer, vol. 116(1), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. Miele & T. Wang & J. A. Mathwig & M. Ciarcià, 2010. "Collision Avoidance for an Aircraft in Abort Landing: Trajectory Optimization and Guidance," Journal of Optimization Theory and Applications, Springer, vol. 146(2), pages 233-254, August.
    2. A. Miele & T. Wang, 2006. "Optimal Trajectories and Guidance Schemes for Ship Collision Avoidance," Journal of Optimization Theory and Applications, Springer, vol. 129(1), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Miele & T. Wang, 2006. "Optimal Trajectories and Guidance Schemes for Ship Collision Avoidance," Journal of Optimization Theory and Applications, Springer, vol. 129(1), pages 1-21, April.
    2. Mauro Pontani & Bruce Conway, 2014. "Optimal Low-Thrust Orbital Maneuvers via Indirect Swarming Method," Journal of Optimization Theory and Applications, Springer, vol. 162(1), pages 272-292, July.
    3. N. Yokoyama & S. Suzuki & T. Tsuchiya, 2008. "Convergence Acceleration of Direct Trajectory Optimization Using Novel Hessian Calculation Methods," Journal of Optimization Theory and Applications, Springer, vol. 136(3), pages 297-319, March.
    4. A. Miele & M. W. Weeks & M. Ciarcià, 2007. "Optimal Trajectories for Spacecraft Rendezvous," Journal of Optimization Theory and Applications, Springer, vol. 132(3), pages 353-376, March.
    5. T. Tarnopolskaya & N. Fulton & H. Maurer, 2012. "Synthesis of Optimal Bang–Bang Control for Cooperative Collision Avoidance for Aircraft (Ships) with Unequal Linear Speeds," Journal of Optimization Theory and Applications, Springer, vol. 155(1), pages 115-144, October.
    6. T. Tarnopolskaya & N. Fulton, 2009. "Optimal Cooperative Collision Avoidance Strategy for Coplanar Encounter: Merz’s Solution Revisited," Journal of Optimization Theory and Applications, Springer, vol. 140(2), pages 355-375, February.
    7. T. Tarnopolskaya & N. Fulton, 2010. "Synthesis of Optimal Control for Cooperative Collision Avoidance for Aircraft (Ships) with Unequal Turn Capabilities," Journal of Optimization Theory and Applications, Springer, vol. 144(2), pages 367-390, February.
    8. A. Miele & T. Wang & J. A. Mathwig & M. Ciarcià, 2010. "Collision Avoidance for an Aircraft in Abort Landing: Trajectory Optimization and Guidance," Journal of Optimization Theory and Applications, Springer, vol. 146(2), pages 233-254, August.
    9. A. Miele & T. Wang & C. S. Chao & J. B. Dabney, 1999. "Optimal Control of a Ship for Collision Avoidance Maneuvers," Journal of Optimization Theory and Applications, Springer, vol. 103(3), pages 495-519, December.
    10. A. Miele & M. Ciarcià & M. W. Weeks, 2007. "Guidance Trajectories for Spacecraft Rendezvous," Journal of Optimization Theory and Applications, Springer, vol. 132(3), pages 377-400, March.
    11. A. Miele & M. Ciarcià, 2008. "Optimal Starting Conditions for the Rendezvous Maneuver, Part 1: Optimal Control Approach," Journal of Optimization Theory and Applications, Springer, vol. 137(3), pages 593-624, June.
    12. A. Miele & T. Wang & C. S. Chao & J. B. Dabney, 1999. "Optimal Control of a Ship for Course Change and Sidestep Maneuvers," Journal of Optimization Theory and Applications, Springer, vol. 103(2), pages 259-282, November.
    13. A. Miele & T. Wang, 2003. "Multiple-Subarc Gradient-Restoration Algorithm, Part 1: Algorithm Structure," Journal of Optimization Theory and Applications, Springer, vol. 116(1), pages 1-17, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:124:y:2005:i:1:d:10.1007_s10957-004-6464-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.