IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v140y2009i2d10.1007_s10957-008-9452-9.html
   My bibliography  Save this article

Optimal Cooperative Collision Avoidance Strategy for Coplanar Encounter: Merz’s Solution Revisited

Author

Listed:
  • T. Tarnopolskaya

    (CSIRO Mathematical & Information Sciences)

  • N. Fulton

    (CSIRO Mathematical & Information Sciences)

Abstract

Analytic solutions for optimal collision avoidance strategies are of great importance when setting and validating air traffic rules and as a benchmark when validating automated proximity management and collision avoidance systems. Such a solution for optimal air collision avoidance strategies for a coplanar cooperative encounter between two identical aircraft (or ships) was first presented by Merz (Proc. Joint Automatic Control Conf., Pap. 15-3:449–454, 1973; Navigation 20(2):144–152, 1973). Unfortunately, Merz provided only a very brief indicative justification for his solution. This paper presents a rigorous analysis of the problem. New results include a characterization of a complete set of extremals, justification for optimal strategies and an analysis of the properties of the regions of different optimal strategies. A simple, practical and sufficiently accurate closed form approximation for dispersal curves that partition the plane of initial positions into the regions of different optimal strategies is also presented.

Suggested Citation

  • T. Tarnopolskaya & N. Fulton, 2009. "Optimal Cooperative Collision Avoidance Strategy for Coplanar Encounter: Merz’s Solution Revisited," Journal of Optimization Theory and Applications, Springer, vol. 140(2), pages 355-375, February.
  • Handle: RePEc:spr:joptap:v:140:y:2009:i:2:d:10.1007_s10957-008-9452-9
    DOI: 10.1007/s10957-008-9452-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-008-9452-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-008-9452-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Miele & T. Wang & C. S. Chao & J. B. Dabney, 1999. "Optimal Control of a Ship for Course Change and Sidestep Maneuvers," Journal of Optimization Theory and Applications, Springer, vol. 103(2), pages 259-282, November.
    2. Clements, John C., 1999. "The optimal control of collision avoidance trajectories in air traffic management," Transportation Research Part B: Methodological, Elsevier, vol. 33(4), pages 265-280, May.
    3. A. Miele & T. Wang, 2006. "Optimal Trajectories and Guidance Schemes for Ship Collision Avoidance," Journal of Optimization Theory and Applications, Springer, vol. 129(1), pages 1-21, April.
    4. A. Miele & T. Wang & C. S. Chao & J. B. Dabney, 1999. "Optimal Control of a Ship for Collision Avoidance Maneuvers," Journal of Optimization Theory and Applications, Springer, vol. 103(3), pages 495-519, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. T. Tarnopolskaya & N. Fulton & H. Maurer, 2012. "Synthesis of Optimal Bang–Bang Control for Cooperative Collision Avoidance for Aircraft (Ships) with Unequal Linear Speeds," Journal of Optimization Theory and Applications, Springer, vol. 155(1), pages 115-144, October.
    2. T. Tarnopolskaya & N. Fulton, 2010. "Synthesis of Optimal Control for Cooperative Collision Avoidance for Aircraft (Ships) with Unequal Turn Capabilities," Journal of Optimization Theory and Applications, Springer, vol. 144(2), pages 367-390, February.
    3. Maksim Buzikov & Andrey Galyaev, 2023. "The Game of Two Identical Cars: An Analytical Description of the Barrier," Journal of Optimization Theory and Applications, Springer, vol. 198(3), pages 988-1018, September.
    4. A. Miele & T. Wang & J. A. Mathwig & M. Ciarcià, 2010. "Collision Avoidance for an Aircraft in Abort Landing: Trajectory Optimization and Guidance," Journal of Optimization Theory and Applications, Springer, vol. 146(2), pages 233-254, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. T. Tarnopolskaya & N. Fulton & H. Maurer, 2012. "Synthesis of Optimal Bang–Bang Control for Cooperative Collision Avoidance for Aircraft (Ships) with Unequal Linear Speeds," Journal of Optimization Theory and Applications, Springer, vol. 155(1), pages 115-144, October.
    2. T. Tarnopolskaya & N. Fulton, 2010. "Synthesis of Optimal Control for Cooperative Collision Avoidance for Aircraft (Ships) with Unequal Turn Capabilities," Journal of Optimization Theory and Applications, Springer, vol. 144(2), pages 367-390, February.
    3. A. Miele & T. Wang, 2005. "Maximin Approach to the Ship Collision Avoidance Problem via Multiple-Subarc Sequential Gradient-Restoration Algorithm," Journal of Optimization Theory and Applications, Springer, vol. 124(1), pages 29-53, January.
    4. A. Miele & T. Wang, 2006. "Optimal Trajectories and Guidance Schemes for Ship Collision Avoidance," Journal of Optimization Theory and Applications, Springer, vol. 129(1), pages 1-21, April.
    5. Erick J. Rodríguez-Seda & Dušan M. Stipanović & Mark W. Spong, 2016. "Guaranteed Collision Avoidance for Autonomous Systems with Acceleration Constraints and Sensing Uncertainties," Journal of Optimization Theory and Applications, Springer, vol. 168(3), pages 1014-1038, March.
    6. A. Miele & T. Wang & J. A. Mathwig & M. Ciarcià, 2010. "Collision Avoidance for an Aircraft in Abort Landing: Trajectory Optimization and Guidance," Journal of Optimization Theory and Applications, Springer, vol. 146(2), pages 233-254, August.
    7. A. Miele & T. Wang & C. S. Chao & J. B. Dabney, 1999. "Optimal Control of a Ship for Collision Avoidance Maneuvers," Journal of Optimization Theory and Applications, Springer, vol. 103(3), pages 495-519, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:140:y:2009:i:2:d:10.1007_s10957-008-9452-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.