IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v116y2003i1d10.1023_a1022154001343.html
   My bibliography  Save this article

Multiple-Subarc Gradient-Restoration Algorithm, Part 2: Application to a Multistage Launch Vehicle Design

Author

Listed:
  • A. Miele

    (Rice University)

  • T. Wang

    (Rice University)

Abstract

In Part 1 (see Ref. 2), a multiple-subarc gradient-restoration algorithm (MSGRA) was developed with the intent of enhancing the robustness of gradient-restoration algorithms and also enlarging the field of applications. Indeed, MSGRA can be applied to optimal control problems involving multiple subsystems as well as discontinuities in the state and control variables at the interface between contiguous subsystems. In Part 2 (this paper), MSGRA is applied to compute the optimal trajectory for a multistage launch vehicle design, specifically, a rocket-powered spacecraft ascending from the Earth surface to a low Earth orbit (LEO). Single-stage, double-stage, and triple-stage configurations are considered. For multistage configurations, discontinuities in the mass occur at the interfaces between consecutive stages. The numerical results show that, given the current levels of the engine specific impulse and spacecraft structural factor, the single-stage version is not feasible at this time, while the double-stage and triple-stage versions are feasible. Further increases in the specific impulse and decreases in the structural factor are needed if the single-stage configuration has to become feasible. Also, the numerical results show that the optimal trajectory requires initially maximum thrust, followed by modulated thrust so as to satisfy the maximum acceleration constraint, followed by nearly zero thrust for coasting flight, followed by a final burst with moderate thrust so as to increase the spacecraft velocity to the circular velocity needed for LEO insertion. The above properties of the optimal thrust time history are useful for developing the guidance scheme approximating in real time the optimal trajectory for a launch vehicle design.

Suggested Citation

  • A. Miele & T. Wang, 2003. "Multiple-Subarc Gradient-Restoration Algorithm, Part 2: Application to a Multistage Launch Vehicle Design," Journal of Optimization Theory and Applications, Springer, vol. 116(1), pages 19-39, January.
  • Handle: RePEc:spr:joptap:v:116:y:2003:i:1:d:10.1023_a:1022154001343
    DOI: 10.1023/A:1022154001343
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1022154001343
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1022154001343?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. Miele & T. Wang & J. A. Mathwig & M. Ciarcià, 2010. "Collision Avoidance for an Aircraft in Abort Landing: Trajectory Optimization and Guidance," Journal of Optimization Theory and Applications, Springer, vol. 146(2), pages 233-254, August.
    2. A. Miele & M. W. Weeks & M. Ciarcià, 2007. "Optimal Trajectories for Spacecraft Rendezvous," Journal of Optimization Theory and Applications, Springer, vol. 132(3), pages 353-376, March.
    3. N. Yokoyama & S. Suzuki & T. Tsuchiya, 2008. "Convergence Acceleration of Direct Trajectory Optimization Using Novel Hessian Calculation Methods," Journal of Optimization Theory and Applications, Springer, vol. 136(3), pages 297-319, March.
    4. A. Miele & T. Wang, 2003. "Multiple-Subarc Gradient-Restoration Algorithm, Part 1: Algorithm Structure," Journal of Optimization Theory and Applications, Springer, vol. 116(1), pages 1-17, January.
    5. Mauro Pontani & Bruce Conway, 2014. "Optimal Low-Thrust Orbital Maneuvers via Indirect Swarming Method," Journal of Optimization Theory and Applications, Springer, vol. 162(1), pages 272-292, July.
    6. A. Miele & M. Ciarcià & M. W. Weeks, 2007. "Guidance Trajectories for Spacecraft Rendezvous," Journal of Optimization Theory and Applications, Springer, vol. 132(3), pages 377-400, March.
    7. A. Miele & T. Wang, 2006. "Optimal Trajectories and Guidance Schemes for Ship Collision Avoidance," Journal of Optimization Theory and Applications, Springer, vol. 129(1), pages 1-21, April.
    8. A. Miele & T. Wang, 2005. "Maximin Approach to the Ship Collision Avoidance Problem via Multiple-Subarc Sequential Gradient-Restoration Algorithm," Journal of Optimization Theory and Applications, Springer, vol. 124(1), pages 29-53, January.
    9. A. Miele & M. Ciarcià, 2008. "Optimal Starting Conditions for the Rendezvous Maneuver, Part 1: Optimal Control Approach," Journal of Optimization Theory and Applications, Springer, vol. 137(3), pages 593-624, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:116:y:2003:i:1:d:10.1023_a:1022154001343. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.