IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v36y2025i1d10.1007_s10845-023-02235-9.html
   My bibliography  Save this article

An imbalanced data learning approach for tool wear monitoring based on data augmentation

Author

Listed:
  • Bowen Zhang

    (Harbin University of Science and Technology)

  • Xianli Liu

    (Harbin University of Science and Technology)

  • Caixu Yue

    (Harbin University of Science and Technology)

  • Shaoyang Liu

    (Harbin University of Science and Technology)

  • Xuebing Li

    (Harbin University of Science and Technology)

  • Steven Y. Liang

    (Georgia Institute of Technology)

  • Lihui Wang

    (KTH Royal Institute of Technology)

Abstract

During cutting operations, tool condition monitoring (TCM) is essential for maintaining safety and cost optimization, especially in the accelerated tool wear phase. Due to the safety constraints of the actual production environment and the tool's properties, the data for each wear stage is usually unbalanced, and these unbalances lead to difficulties in failure monitoring. To this end, a novel TCM method based on data augmentation is proposed, which uses generative adversarial networks (GANs) to generate valuable artificial samples for a few classes to balance the data distribution. Unlike the traditional GANs, the proposed Conditional Wasserstein GAN-Gradient Penalty (CWGAN-GP) avoids pattern collapse and training instability and simultaneously generates more realistic data and signal samples with labels for different wear states. To evaluate the quality of the generated data, an evaluation index is proposed to evaluate the generated data while further screening the samples to achieve effective oversampling. Finally, the continuous wavelet transform (CWT) is combined with the convolutional neural network (CNN) architecture of Inception-ResNet-v2 for TCM, and it is demonstrated that data augmentation can effectively improve the performance of training classification models for unbalanced data by comparing three classification methods with two data augmentation experiments, and the proposed method has a better monitoring performance.

Suggested Citation

  • Bowen Zhang & Xianli Liu & Caixu Yue & Shaoyang Liu & Xuebing Li & Steven Y. Liang & Lihui Wang, 2025. "An imbalanced data learning approach for tool wear monitoring based on data augmentation," Journal of Intelligent Manufacturing, Springer, vol. 36(1), pages 399-420, January.
  • Handle: RePEc:spr:joinma:v:36:y:2025:i:1:d:10.1007_s10845-023-02235-9
    DOI: 10.1007/s10845-023-02235-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-023-02235-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-023-02235-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xianli Liu & Bowen Zhang & Xuebing Li & Shaoyang Liu & Caixu Yue & Steven Y. Liang, 2023. "An approach for tool wear prediction using customized DenseNet and GRU integrated model based on multi-sensor feature fusion," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 885-902, February.
    2. Zhiwen Huang & Jianmin Zhu & Jingtao Lei & Xiaoru Li & Fengqing Tian, 2020. "Tool wear predicting based on multi-domain feature fusion by deep convolutional neural network in milling operations," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 953-966, April.
    3. Jia Luo & Jinying Huang & Hongmei Li, 2021. "A case study of conditional deep convolutional generative adversarial networks in machine fault diagnosis," Journal of Intelligent Manufacturing, Springer, vol. 32(2), pages 407-425, February.
    4. Lucas Costa Brito & Márcio Bacci Silva & Marcus Antonio Viana Duarte, 2021. "Identification of cutting tool wear condition in turning using self-organizing map trained with imbalanced data," Journal of Intelligent Manufacturing, Springer, vol. 32(1), pages 127-140, January.
    5. Shixu Sun & Xiaofeng Hu & Yingchao Liu, 2022. "An imbalanced data learning method for tool breakage detection based on generative adversarial networks," Journal of Intelligent Manufacturing, Springer, vol. 33(8), pages 2441-2455, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ammar H. Elsheikh & Taher A. Shehabeldeen & Jianxin Zhou & Ezzat Showaib & Mohamed Abd Elaziz, 2021. "Prediction of laser cutting parameters for polymethylmethacrylate sheets using random vector functional link network integrated with equilibrium optimizer," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1377-1388, June.
    2. Gao, Bixuan & Kong, Xiangyu & Li, Shangze & Chen, Yi & Zhang, Xiyuan & Liu, Ziyu & Lv, Weijia, 2024. "Enhancing anomaly detection accuracy and interpretability in low-quality and class imbalanced data: A comprehensive approach," Applied Energy, Elsevier, vol. 353(PB).
    3. Chia-Yu Hsu & Wei-Chen Liu, 2021. "Multiple time-series convolutional neural network for fault detection and diagnosis and empirical study in semiconductor manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 823-836, March.
    4. Jeongsub Choi & Mengmeng Zhu & Jihoon Kang & Myong K. Jeong, 2024. "Convolutional neural network based multi-input multi-output model for multi-sensor multivariate virtual metrology in semiconductor manufacturing," Annals of Operations Research, Springer, vol. 339(1), pages 185-201, August.
    5. Rombach, Katharina & Michau, Gabriel & Fink, Olga, 2023. "Controlled generation of unseen faults for Partial and Open-Partial domain adaptation," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    6. Elaheh Jafarigol & Theodore B. Trafalis, 2024. "A distributed approach to meteorological predictions: addressing data imbalance in precipitation prediction models through federated learning and GANs," Computational Management Science, Springer, vol. 21(1), pages 1-23, June.
    7. Yuqing Zhou & Bintao Sun & Weifang Sun & Zhi Lei, 2022. "Tool wear condition monitoring based on a two-layer angle kernel extreme learning machine using sound sensor for milling process," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 247-258, January.
    8. Jia Luo & Jingying Huang & Jiancheng Ma & Siyuan Liu, 2024. "Application of self-attention conditional deep convolutional generative adversarial networks in the fault diagnosis of planetary gearboxes," Journal of Risk and Reliability, , vol. 238(2), pages 260-273, April.
    9. Liang Xi & Wei Wang & Jingyi Chen & Xuefeng Wu, 2024. "Appending-inspired multivariate time series association fusion for tool condition monitoring," Journal of Intelligent Manufacturing, Springer, vol. 35(7), pages 3259-3272, October.
    10. Yanan Pan & Renke Kang & Zhigang Dong & Wenhao Du & Sen Yin & Yan Bao, 2022. "On-line prediction of ultrasonic elliptical vibration cutting surface roughness of tungsten heavy alloy based on deep learning," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 675-685, March.
    11. Zehua Wang & Sibao Wang & Shilong Wang & Zengya Zhao & Zhifeng Tian, 2025. "An intelligent prediction method of surface residual stresses based on multi-source heterogeneous data," Journal of Intelligent Manufacturing, Springer, vol. 36(1), pages 441-457, January.
    12. Danil Yu Pimenov & Andres Bustillo & Szymon Wojciechowski & Vishal S. Sharma & Munish K. Gupta & Mustafa Kuntoğlu, 2023. "Artificial intelligence systems for tool condition monitoring in machining: analysis and critical review," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2079-2121, June.
    13. Peng Jieyang & Andreas Kimmig & Wang Dongkun & Zhibin Niu & Fan Zhi & Wang Jiahai & Xiufeng Liu & Jivka Ovtcharova, 2023. "A systematic review of data-driven approaches to fault diagnosis and early warning," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3277-3304, December.
    14. Liu, Jiaquan & Hou, Lei & Zhang, Rui & Sun, Xingshen & Yu, Qiaoyan & Yang, Kai & Zhang, Xinru, 2023. "Explainable fault diagnosis of oil-gas treatment station based on transfer learning," Energy, Elsevier, vol. 262(PA).
    15. Chuanxia Jian & Yinhui Ao, 2023. "Imbalanced fault diagnosis based on semi-supervised ensemble learning," Journal of Intelligent Manufacturing, Springer, vol. 34(7), pages 3143-3158, October.
    16. Shixu Sun & Xiaofeng Hu & Yingchao Liu, 2022. "An imbalanced data learning method for tool breakage detection based on generative adversarial networks," Journal of Intelligent Manufacturing, Springer, vol. 33(8), pages 2441-2455, December.
    17. Raouf Zerrougui & Amel B. H. Adamou-Mitiche & Lahcene Mitiche, 2023. "A novel machine learning algorithm for interval systems approximation based on artificial neural network," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2171-2184, June.
    18. Shanmugasivam Pillai & Prahlad Vadakkepat, 2022. "Deep learning for machine health prognostics using Kernel-based feature transformation," Journal of Intelligent Manufacturing, Springer, vol. 33(6), pages 1665-1680, August.
    19. Hanting Zhou & Wenhe Chen & Jing Liu & Longsheng Cheng & Min Xia, 2024. "Trustworthy and intelligent fault diagnosis with effective denoising and evidential stacked GRU neural network," Journal of Intelligent Manufacturing, Springer, vol. 35(7), pages 3523-3542, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:36:y:2025:i:1:d:10.1007_s10845-023-02235-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.