IDEAS home Printed from https://ideas.repec.org/a/spr/comgts/v21y2024i1d10.1007_s10287-024-00504-3.html
   My bibliography  Save this article

A distributed approach to meteorological predictions: addressing data imbalance in precipitation prediction models through federated learning and GANs

Author

Listed:
  • Elaheh Jafarigol

    (University of Oklahoma)

  • Theodore B. Trafalis

    (University of Oklahoma)

Abstract

The classification of weather data involves categorizing meteorological phenomena into classes, thereby facilitating nuanced analyses and precise predictions for various sectors such as agriculture, aviation, and disaster management. This involves utilizing machine learning models to analyze large, multidimensional weather datasets for patterns and trends. These datasets may include variables such as temperature, humidity, wind speed, and pressure, contributing to meteorological conditions. Furthermore, it’s imperative that classification algorithms proficiently navigate challenges such as data imbalances, where certain weather events (e.g., storms or extreme temperatures) might be underrepresented. This empirical study explores data augmentation methods to address imbalanced classes in tabular weather data in centralized and federated settings. Employing data augmentation techniques such as the Synthetic Minority Over-sampling Technique or Generative Adversarial Networks can improve the model’s accuracy in classifying rare but critical weather events. Moreover, with advancements in federated learning, machine learning models can be trained across decentralized databases, ensuring privacy and data integrity while mitigating the need for centralized data storage and processing. Thus, the classification of weather data stands as a critical bridge, linking raw meteorological data to actionable insights, enhancing our capacity to anticipate and prepare for diverse weather conditions.

Suggested Citation

  • Elaheh Jafarigol & Theodore B. Trafalis, 2024. "A distributed approach to meteorological predictions: addressing data imbalance in precipitation prediction models through federated learning and GANs," Computational Management Science, Springer, vol. 21(1), pages 1-23, June.
  • Handle: RePEc:spr:comgts:v:21:y:2024:i:1:d:10.1007_s10287-024-00504-3
    DOI: 10.1007/s10287-024-00504-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10287-024-00504-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10287-024-00504-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jia Luo & Jinying Huang & Hongmei Li, 2021. "A case study of conditional deep convolutional generative adversarial networks in machine fault diagnosis," Journal of Intelligent Manufacturing, Springer, vol. 32(2), pages 407-425, February.
    2. Theodore Trafalis & Indra Adrianto & Michael Richman & S. Lakshmivarahan, 2014. "Machine-learning classifiers for imbalanced tornado data," Computational Management Science, Springer, vol. 11(4), pages 403-418, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Bixuan & Kong, Xiangyu & Li, Shangze & Chen, Yi & Zhang, Xiyuan & Liu, Ziyu & Lv, Weijia, 2024. "Enhancing anomaly detection accuracy and interpretability in low-quality and class imbalanced data: A comprehensive approach," Applied Energy, Elsevier, vol. 353(PB).
    2. Rombach, Katharina & Michau, Gabriel & Fink, Olga, 2023. "Controlled generation of unseen faults for Partial and Open-Partial domain adaptation," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    3. Jia Luo & Jingying Huang & Jiancheng Ma & Siyuan Liu, 2024. "Application of self-attention conditional deep convolutional generative adversarial networks in the fault diagnosis of planetary gearboxes," Journal of Risk and Reliability, , vol. 238(2), pages 260-273, April.
    4. Peng Jieyang & Andreas Kimmig & Wang Dongkun & Zhibin Niu & Fan Zhi & Wang Jiahai & Xiufeng Liu & Jivka Ovtcharova, 2023. "A systematic review of data-driven approaches to fault diagnosis and early warning," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3277-3304, December.
    5. Liu, Jiaquan & Hou, Lei & Zhang, Rui & Sun, Xingshen & Yu, Qiaoyan & Yang, Kai & Zhang, Xinru, 2023. "Explainable fault diagnosis of oil-gas treatment station based on transfer learning," Energy, Elsevier, vol. 262(PA).
    6. Chuanxia Jian & Yinhui Ao, 2023. "Imbalanced fault diagnosis based on semi-supervised ensemble learning," Journal of Intelligent Manufacturing, Springer, vol. 34(7), pages 3143-3158, October.
    7. Wenjuan Sun & Paolo Bocchini & Brian D. Davison, 2020. "Applications of artificial intelligence for disaster management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 2631-2689, September.
    8. Shixu Sun & Xiaofeng Hu & Yingchao Liu, 2022. "An imbalanced data learning method for tool breakage detection based on generative adversarial networks," Journal of Intelligent Manufacturing, Springer, vol. 33(8), pages 2441-2455, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comgts:v:21:y:2024:i:1:d:10.1007_s10287-024-00504-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.