IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v36y2025i1d10.1007_s10845-023-02227-9.html
   My bibliography  Save this article

Q-learning-based multi-objective particle swarm optimization with local search within factories for energy-efficient distributed flow-shop scheduling problem

Author

Listed:
  • Wenqiang Zhang

    (Henan University of Technology
    Henan University of Technology)

  • Huili Geng

    (Henan University of Technology)

  • Chen Li

    (Henan University of Technology)

  • Mitsuo Gen

    (Tokyo University of Science)

  • Guohui Zhang

    (Zhengzhou University of Aeronautics)

  • Miaolei Deng

    (Henan University of Technology)

Abstract

Given the increasing severity of ecological issues, sustainable development and green manufacturing have emerged as crucial areas of research and practice. The continuous growth of the globalizing economy has led to the prevalence of distributed manufacturing systems. Distributed flow-shop scheduling problem (DFSP) is a complex NP-hard problem that involves two highly coupled sub-problems: job allocating for factories and job sequencing within factories. This paper proposes an efficient Q-learning-based multi-objective particle swarm optimization (QL-MoPSO) to address the DFSP, with the objectives of minimizing makespan and total energy consumption. The particle swarm optimization (PSO) algorithm has been enhanced by dividing particles into three subgroups, enabling faster convergence to three distinct areas of the Pareto Front (PF). Q-learning guides variable neighborhood search (VNS) as a local search strategy, balancing exploration and exploitation capabilities. To make the algorithm more reasonable and efficient for solving DFSP, multi-objective particle swarm optimization (MoPSO) uses the exchange sequence to update the job sequence vector, crossover and mutation to update the factory assignment vector. Computational experiments demonstrate that the proposed algorithm accelerates convergence and ensures good distribution performance and diversity, outperforming traditional multi-objective evolutionary algorithms.

Suggested Citation

  • Wenqiang Zhang & Huili Geng & Chen Li & Mitsuo Gen & Guohui Zhang & Miaolei Deng, 2025. "Q-learning-based multi-objective particle swarm optimization with local search within factories for energy-efficient distributed flow-shop scheduling problem," Journal of Intelligent Manufacturing, Springer, vol. 36(1), pages 185-208, January.
  • Handle: RePEc:spr:joinma:v:36:y:2025:i:1:d:10.1007_s10845-023-02227-9
    DOI: 10.1007/s10845-023-02227-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-023-02227-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-023-02227-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leilei Meng & Chaoyong Zhang & Xinyu Shao & Yaping Ren & Caile Ren, 2019. "Mathematical modelling and optimisation of energy-conscious hybrid flow shop scheduling problem with unrelated parallel machines," International Journal of Production Research, Taylor & Francis Journals, vol. 57(4), pages 1119-1145, February.
    2. Shengluo Yang & Zhigang Xu, 2021. "The distributed assembly permutation flowshop scheduling problem with flexible assembly and batch delivery," International Journal of Production Research, Taylor & Francis Journals, vol. 59(13), pages 4053-4071, July.
    3. Ivona Brajević & Predrag S. Stanimirović & Shuai Li & Xinwei Cao & Ameer Tamoor Khan & Lev A. Kazakovtsev, 2022. "Hybrid Sine Cosine Algorithm for Solving Engineering Optimization Problems," Mathematics, MDPI, vol. 10(23), pages 1-21, December.
    4. Taillard, E., 1993. "Benchmarks for basic scheduling problems," European Journal of Operational Research, Elsevier, vol. 64(2), pages 278-285, January.
    5. Chih, Mingchang, 2023. "Stochastic stability analysis of particle swarm optimization with pseudo random number assignment strategy," European Journal of Operational Research, Elsevier, vol. 305(2), pages 562-593.
    6. Ruiz, Rubén & Pan, Quan-Ke & Naderi, Bahman, 2019. "Iterated Greedy methods for the distributed permutation flowshop scheduling problem," Omega, Elsevier, vol. 83(C), pages 213-222.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Perez-Gonzalez, Paz & Framinan, Jose M., 2024. "A review and classification on distributed permutation flowshop scheduling problems," European Journal of Operational Research, Elsevier, vol. 312(1), pages 1-21.
    2. Mohammad Rostami & Milad Mohammadi, 2024. "Two-machine decentralized flow shop scheduling problem with inter-factory batch delivery system," Operational Research, Springer, vol. 24(3), pages 1-37, September.
    3. Xiaohui Zhang & Xinhua Liu & Shufeng Tang & Grzegorz Królczyk & Zhixiong Li, 2019. "Solving Scheduling Problem in a Distributed Manufacturing System Using a Discrete Fruit Fly Optimization Algorithm," Energies, MDPI, vol. 12(17), pages 1-24, August.
    4. He, Xuan & Pan, Quan-Ke & Gao, Liang & Neufeld, Janis S. & Gupta, Jatinder N.D., 2024. "Historical information based iterated greedy algorithm for distributed flowshop group scheduling problem with sequence-dependent setup times," Omega, Elsevier, vol. 123(C).
    5. Shahaboddin Shamshirband & Mohammad Shojafar & A. Hosseinabadi & Maryam Kardgar & M. Nasir & Rodina Ahmad, 2015. "OSGA: genetic-based open-shop scheduling with consideration of machine maintenance in small and medium enterprises," Annals of Operations Research, Springer, vol. 229(1), pages 743-758, June.
    6. Tao Ren & Yan Zhang & Shuenn-Ren Cheng & Chin-Chia Wu & Meng Zhang & Bo-yu Chang & Xin-yue Wang & Peng Zhao, 2020. "Effective Heuristic Algorithms Solving the Jobshop Scheduling Problem with Release Dates," Mathematics, MDPI, vol. 8(8), pages 1-25, July.
    7. Gueret, Christelle & Jussien, Narendra & Prins, Christian, 2000. "Using intelligent backtracking to improve branch-and-bound methods: An application to Open-Shop problems," European Journal of Operational Research, Elsevier, vol. 127(2), pages 344-354, December.
    8. Barry B. Barrios & Quim Castellà & Angel A. Juan & Manuel Mateo, 2015. "ILS-ESP: An Efficient, Simple, and Parameter-Free Algorithm for Solving the Permutation Flow-Shop Problem," Working Papers 636, Barcelona School of Economics.
    9. Sels, Veronique & Craeymeersch, Kjeld & Vanhoucke, Mario, 2011. "A hybrid single and dual population search procedure for the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 215(3), pages 512-523, December.
    10. Hajo Terbrack & Thorsten Claus & Frank Herrmann, 2021. "Energy-Oriented Production Planning in Industry: A Systematic Literature Review and Classification Scheme," Sustainability, MDPI, vol. 13(23), pages 1-32, December.
    11. Brammer, Janis & Lutz, Bernhard & Neumann, Dirk, 2022. "Permutation flow shop scheduling with multiple lines and demand plans using reinforcement learning," European Journal of Operational Research, Elsevier, vol. 299(1), pages 75-86.
    12. Pan, Quan-Ke & Ruiz, Rubén, 2012. "Local search methods for the flowshop scheduling problem with flowtime minimization," European Journal of Operational Research, Elsevier, vol. 222(1), pages 31-43.
    13. Buscher, Udo & Shen, Liji, 2009. "An integrated tabu search algorithm for the lot streaming problem in job shops," European Journal of Operational Research, Elsevier, vol. 199(2), pages 385-399, December.
    14. Jose L. Andrade-Pineda & David Canca & Pedro L. Gonzalez-R & M. Calle, 2020. "Scheduling a dual-resource flexible job shop with makespan and due date-related criteria," Annals of Operations Research, Springer, vol. 291(1), pages 5-35, August.
    15. Naderi, B. & Zandieh, M., 2014. "Modeling and scheduling no-wait open shop problems," International Journal of Production Economics, Elsevier, vol. 158(C), pages 256-266.
    16. Tseng, Lin-Yu & Lin, Ya-Tai, 2009. "A hybrid genetic local search algorithm for the permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 198(1), pages 84-92, October.
    17. Gerardo Minella & Rubén Ruiz & Michele Ciavotta, 2008. "A Review and Evaluation of Multiobjective Algorithms for the Flowshop Scheduling Problem," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 451-471, August.
    18. Pempera, Jaroslaw & Smutnicki, Czeslaw, 2018. "Open shop cyclic scheduling," European Journal of Operational Research, Elsevier, vol. 269(2), pages 773-781.
    19. Shahvari, Omid & Logendran, Rasaratnam, 2016. "Hybrid flow shop batching and scheduling with a bi-criteria objective," International Journal of Production Economics, Elsevier, vol. 179(C), pages 239-258.
    20. Husam Dauod & Nieqing Cao & Debiao Li & Jaehee Kim & Sang Won Yoon & Daehan Won, 2023. "An Order Scheduling Heuristic to Minimize the Total Collation Delays and the Makespan in High-Throughput Make-to-Order Manufacturing Systems," SN Operations Research Forum, Springer, vol. 4(2), pages 1-23, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:36:y:2025:i:1:d:10.1007_s10845-023-02227-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.