IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v24y2024i3d10.1007_s12351-024-00844-7.html
   My bibliography  Save this article

Two-machine decentralized flow shop scheduling problem with inter-factory batch delivery system

Author

Listed:
  • Mohammad Rostami

    (Shahrood University of Technology)

  • Milad Mohammadi

    (Shahrood University of Technology)

Abstract

Technological advancement, the emergence of more complex production systems, and the need for greater manufacturer competition have caused production systems to shift from a centralized environment to a decentralized one. Researchers have paid more attention to distributed flow shop scheduling problems and investigated various features and issues related to them in recent years. However, special types of these problems, in which the network structure is serial and inter-factory transportation is significant, have received less attention. This study investigated the two-machine decentralized flow shop scheduling problem, in which inter-factory transportation is handled by a batch delivery system. The goal was to simultaneously reduce the costs of makespan and batch delivery. A mixed-integer linear programming model capable of solving small-size instances in a logical running time was presented to better describe the problem. Then, in order to solve large-size instances in a logical running time, a fast branch and bound algorithm with a heuristic method were developed to obtain the appropriate upper bound as well as the tight lower bounds at each node. The computational results indicated that the B&B algorithm performed very well in terms of problem-solving running time. The findings also demonstrated that the heuristic method can solve the most complex instances by 100 jobs with less than 13% error.

Suggested Citation

  • Mohammad Rostami & Milad Mohammadi, 2024. "Two-machine decentralized flow shop scheduling problem with inter-factory batch delivery system," Operational Research, Springer, vol. 24(3), pages 1-37, September.
  • Handle: RePEc:spr:operea:v:24:y:2024:i:3:d:10.1007_s12351-024-00844-7
    DOI: 10.1007/s12351-024-00844-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-024-00844-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-024-00844-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Deming Lei & Bin Su & Ming Li, 2021. "Cooperated teaching-learning-based optimisation for distributed two-stage assembly flow shop scheduling," International Journal of Production Research, Taylor & Francis Journals, vol. 59(23), pages 7232-7245, December.
    2. Shengluo Yang & Zhigang Xu, 2021. "The distributed assembly permutation flowshop scheduling problem with flexible assembly and batch delivery," International Journal of Production Research, Taylor & Francis Journals, vol. 59(13), pages 4053-4071, July.
    3. Yin, Yunqiang & Cheng, T.C.E. & Hsu, Chou-Jung & Wu, Chin-Chia, 2013. "Single-machine batch delivery scheduling with an assignable common due window," Omega, Elsevier, vol. 41(2), pages 216-225.
    4. Wang, Guoqing & Cheng, T. C. Edwin, 2000. "Parallel machine scheduling with batch delivery costs," International Journal of Production Economics, Elsevier, vol. 68(2), pages 177-183, November.
    5. Nicholas G. Hall & Chris N. Potts, 2003. "Supply chain scheduling: Batching and delivery," Operations Research, INFORMS, vol. 51(4), pages 566-584, August.
    6. Bachtenkirch, David & Bock, Stefan, 2022. "Finding efficient make-to-order production and batch delivery schedules," European Journal of Operational Research, Elsevier, vol. 297(1), pages 133-152.
    7. Ali Gharaei & Fariborz Jolai, 2021. "A Pareto approach for the multi-factory supply chain scheduling and distribution problem," Operational Research, Springer, vol. 21(4), pages 2333-2364, December.
    8. Hua Gong & Biao Zhang & Wuliang Peng, 2015. "Scheduling and Common Due Date Assignment on a Single Parallel-Batching Machine with Batch Delivery," Discrete Dynamics in Nature and Society, Hindawi, vol. 2015, pages 1-7, April.
    9. Taillard, E., 1993. "Benchmarks for basic scheduling problems," European Journal of Operational Research, Elsevier, vol. 64(2), pages 278-285, January.
    10. de Matta, Renato & Miller, Tan, 2004. "Production and inter-facility transportation scheduling for a process industry," European Journal of Operational Research, Elsevier, vol. 158(1), pages 72-88, October.
    11. Min Kong & Jun Pei & Jin Xu & Xinbao Liu & Xiaoyu Yu & Panos M. Pardalos, 2020. "A robust optimization approach for integrated steel production and batch delivery scheduling with uncertain rolling times and deterioration effect," International Journal of Production Research, Taylor & Francis Journals, vol. 58(17), pages 5132-5154, September.
    12. Mohammad Rostami & Shiva Nikravesh & Mahdi Shahin, 2020. "Minimizing total weighted completion and batch delivery times with machine deterioration and learning effect: a case study from wax production," Operational Research, Springer, vol. 20(3), pages 1255-1287, September.
    13. Zhi-Long Chen, 2010. "Integrated Production and Outbound Distribution Scheduling: Review and Extensions," Operations Research, INFORMS, vol. 58(1), pages 130-148, February.
    14. Ji, Min & He, Yong & Cheng, T.C.E., 2007. "Batch delivery scheduling with batch delivery cost on a single machine," European Journal of Operational Research, Elsevier, vol. 176(2), pages 745-755, January.
    15. Jacob Lohmer & Rainer Lasch, 2021. "Production planning and scheduling in multi-factory production networks: a systematic literature review," International Journal of Production Research, Taylor & Francis Journals, vol. 59(7), pages 2028-2054, April.
    16. Mazdeh, Mohammad Mahdavi & Sarhadi, Mansoor & Hindi, Khalil S., 2007. "A branch-and-bound algorithm for single-machine scheduling with batch delivery minimizing flow times and delivery costs," European Journal of Operational Research, Elsevier, vol. 183(1), pages 74-86, November.
    17. Omer Ozkan & Murat Ermis & Ilker Bekmezci, 2020. "Reliable communication network design: The hybridisation of metaheuristics with the branch and bound method," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 71(5), pages 784-799, May.
    18. Yunqiang Yin & Yongjian Yang & Dujuan Wang & T.C.E. Cheng & Chin‐Chia Wu, 2018. "Integrated production, inventory, and batch delivery scheduling with due date assignment and two competing agents," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(5), pages 393-409, August.
    19. Mehdi Abedi & Hany Seidgar, 2016. "A new bi-level meta-heuristic approach for a single machine JIT-scheduling in the batch delivery system with controllable due dates," International Journal of Services and Operations Management, Inderscience Enterprises Ltd, vol. 23(2), pages 135-152.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ullrich, Christian A., 2013. "Integrated machine scheduling and vehicle routing with time windows," European Journal of Operational Research, Elsevier, vol. 227(1), pages 152-165.
    2. Zhong, Xueling & Fan, Jie & Ou, Jinwen, 2022. "Coordinated scheduling of the outsourcing, in-house production and distribution operations," European Journal of Operational Research, Elsevier, vol. 302(2), pages 427-437.
    3. Han, Dongya & Yang, Yongjian & Wang, Dujuan & Cheng, T.C.E. & Yin, Yunqiang, 2019. "Integrated production, inventory, and outbound distribution operations with fixed departure times in a three-stage supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 334-347.
    4. Maliheh Ganji & Rahmat Rabet & Seyed Mojtaba Sajadi, 2022. "A new coordinating model for green supply chain and batch delivery scheduling with satisfaction customers," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 4566-4601, April.
    5. Hua Gong & Lixin Tang & Joseph Y.T. Leung, 2016. "Parallel machine scheduling with batch deliveries to minimize total flow time and delivery cost," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(6), pages 492-502, September.
    6. Koulamas, Christos & Kyparisis, George J., 2023. "A classification of dynamic programming formulations for offline deterministic single-machine scheduling problems," European Journal of Operational Research, Elsevier, vol. 305(3), pages 999-1017.
    7. Berghman, Lotte & Kergosien, Yannick & Billaut, Jean-Charles, 2023. "A review on integrated scheduling and outbound vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 311(1), pages 1-23.
    8. Yang, Xianyan & Li, Feng & Liu, Zhixue & Xu, Zhou, 2024. "New exact and heuristic algorithms for general production and delivery integration," European Journal of Operational Research, Elsevier, vol. 316(2), pages 419-442.
    9. Zhi-Long Chen, 2010. "Integrated Production and Outbound Distribution Scheduling: Review and Extensions," Operations Research, INFORMS, vol. 58(1), pages 130-148, February.
    10. Yunqiang Yin & Doudou Li & Dujuan Wang & T. C. E. Cheng, 2021. "Single-machine serial-batch delivery scheduling with two competing agents and due date assignment," Annals of Operations Research, Springer, vol. 298(1), pages 497-523, March.
    11. Yunqiang Yin & Yongjian Yang & Dujuan Wang & T.C.E. Cheng & Chin‐Chia Wu, 2018. "Integrated production, inventory, and batch delivery scheduling with due date assignment and two competing agents," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(5), pages 393-409, August.
    12. Mohammad Rostami & Shiva Nikravesh & Mahdi Shahin, 2020. "Minimizing total weighted completion and batch delivery times with machine deterioration and learning effect: a case study from wax production," Operational Research, Springer, vol. 20(3), pages 1255-1287, September.
    13. Deyun Wang & Olivier Grunder & Abdellah EL Moudni, 2014. "Using genetic algorithm for lot sizing and scheduling problem with arbitrary job volumes and distinct job due date considerations," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(8), pages 1694-1707, August.
    14. Ali Gharaei & Fariborz Jolai, 2021. "A Pareto approach for the multi-factory supply chain scheduling and distribution problem," Operational Research, Springer, vol. 21(4), pages 2333-2364, December.
    15. Wan, Long & Zhang, An, 2014. "Coordinated scheduling on parallel machines with batch delivery," International Journal of Production Economics, Elsevier, vol. 150(C), pages 199-203.
    16. Xin Feng & Yongxi Cheng & Feifeng Zheng & Yinfeng Xu, 2016. "Online integrated production–distribution scheduling problems without preemption," Journal of Combinatorial Optimization, Springer, vol. 31(4), pages 1569-1585, May.
    17. Liang Tang & Zhihong Jin & Xuwei Qin & Ke Jing, 2019. "Supply chain scheduling in a collaborative manufacturing mode: model construction and algorithm design," Annals of Operations Research, Springer, vol. 275(2), pages 685-714, April.
    18. Han, Bin & Zhang, Wenjun & Lu, Xiwen & Lin, Yingzi, 2015. "On-line supply chain scheduling for single-machine and parallel-machine configurations with a single customer: Minimizing the makespan and delivery cost," European Journal of Operational Research, Elsevier, vol. 244(3), pages 704-714.
    19. Esaignani Selvarajah & Rui Zhang, 2014. "Supply chain scheduling to minimize holding costs with outsourcing," Annals of Operations Research, Springer, vol. 217(1), pages 479-490, June.
    20. Xiaoyu Yu & Jingyi Qian & Yajing Zhang & Min Kong, 2023. "Supply Chain Scheduling Method for the Coordination of Agile Production and Port Delivery Operation," Mathematics, MDPI, vol. 11(15), pages 1-24, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:24:y:2024:i:3:d:10.1007_s12351-024-00844-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.