IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v35y2024i8d10.1007_s10845-023-02258-2.html
   My bibliography  Save this article

Reinforcement learning for sustainability enhancement of production lines

Author

Listed:
  • Alberto Loffredo

    (Politecnico di Milano)

  • Marvin Carl May

    (Karlsruhe Institute of Technology (KIT))

  • Andrea Matta

    (Politecnico di Milano)

  • Gisela Lanza

    (Karlsruhe Institute of Technology (KIT))

Abstract

The importance of sustainability in industry is dramatically rising in recent years. Controlling machine states to achieve the best trade-off between production rate and energy demand is an effective method for improving the energy efficiency of production systems. This technique is referred to as energy-efficient control (EEC) and it triggers machines in a standby state with low power requests. Reinforcement Learning (RL) algorithms can be used to successfully control production systems without the requirement of prior knowledge about system parameters. Due to the difficulty in acquiring comprehensive information about system dynamics in real-world scenarios, this is considered an important factor. The goal of this work is to create a novel RL-based model to apply EEC to multi-stage production lines with parallel machine workstations without relying on full knowledge of the system dynamics. Numerical results confirm model benefits when applied to a real line from the automotive sector. Further experiments confirm the effectiveness and generality of the approach.

Suggested Citation

  • Alberto Loffredo & Marvin Carl May & Andrea Matta & Gisela Lanza, 2024. "Reinforcement learning for sustainability enhancement of production lines," Journal of Intelligent Manufacturing, Springer, vol. 35(8), pages 3775-3791, December.
  • Handle: RePEc:spr:joinma:v:35:y:2024:i:8:d:10.1007_s10845-023-02258-2
    DOI: 10.1007/s10845-023-02258-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-023-02258-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-023-02258-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:35:y:2024:i:8:d:10.1007_s10845-023-02258-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.