IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i13p1461-d579808.html
   My bibliography  Save this article

Accuracy of Semi-Analytical and Numerical Approaches in the Evaluation of Serial Bernoulli Production Lines

Author

Listed:
  • Viktor Ložar

    (Department of Naval Architecture and Ocean Engineering, Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5, 10000 Zagreb, Croatia)

  • Neven Hadžić

    (Department of Naval Architecture and Ocean Engineering, Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5, 10000 Zagreb, Croatia)

  • Tihomir Opetuk

    (Department of Naval Architecture and Ocean Engineering, Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5, 10000 Zagreb, Croatia)

  • Vedran Slapničar

    (Department of Naval Architecture and Ocean Engineering, Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5, 10000 Zagreb, Croatia)

Abstract

The manufacturing industry has a great impact on the economic growth of countries. It is, therefore, crucial to master the skills of the production system by mathematical tools that enable the evaluation of the production systems’ performance measures. Four mathematical approaches toward the modeling of steady-state behavior of serial Bernoulli production lines were considered in this study, namely, the analytical approach, the finite state method, the aggregation procedure, and numerical modeling. The accuracy of the performance measures determined using the semi-analytical methods and the numerical approach was validated using numerous theoretical examples and the results obtained using the analytical model. All of the considered methods demonstrated relevant reliability, regardless of the different theoretical backgrounds.

Suggested Citation

  • Viktor Ložar & Neven Hadžić & Tihomir Opetuk & Vedran Slapničar, 2021. "Accuracy of Semi-Analytical and Numerical Approaches in the Evaluation of Serial Bernoulli Production Lines," Mathematics, MDPI, vol. 9(13), pages 1-25, June.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:13:p:1461-:d:579808
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/13/1461/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/13/1461/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert A. Jarrow & David Lando & Stuart M. Turnbull, 2008. "A Markov Model for the Term Structure of Credit Risk Spreads," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 18, pages 411-453, World Scientific Publishing Co. Pte. Ltd..
    2. Zhiyang Jia & Liang Zhang & Jorge Arinez & Guoxian Xiao, 2016. "Performance analysis for serial production lines with Bernoulli Machines and Real-time WIP-based Machine switch-on/off control," International Journal of Production Research, Taylor & Francis Journals, vol. 54(21), pages 6285-6301, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ammann, Manuel & Kind, Axel & Wilde, Christian, 2003. "Are convertible bonds underpriced? An analysis of the French market," Journal of Banking & Finance, Elsevier, vol. 27(4), pages 635-653, April.
    2. Van Landschoot, Astrid, 2004. "Determinants of euro term structure of credit spreads," Working Paper Series 397, European Central Bank.
    3. Giampaolo Gabbi & Andrea Sironi, 2005. "Which factors affect corporate bonds pricing? Empirical evidence from eurobonds primary market spreads," The European Journal of Finance, Taylor & Francis Journals, vol. 11(1), pages 59-74.
    4. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    5. Hong-Ming Yin & Jin Liang & Yuan Wu, 2018. "On a New Corporate Bond Pricing Model with Potential Credit Rating Change and Stochastic Interest Rate," JRFM, MDPI, vol. 11(4), pages 1-12, December.
    6. Cumby, Robert E. & Pastine, Tuvana, 2001. "Emerging market debt: measuring credit quality and examining relative pricing," Journal of International Money and Finance, Elsevier, vol. 20(5), pages 591-609, October.
    7. Chava, Sudheer & Jarrow, Robert, 2008. "Modeling loan commitments," Finance Research Letters, Elsevier, vol. 5(1), pages 11-20, March.
    8. Augusto Castillo, 2004. "Firm and Corporate Bond Valuation: A Simulation Dynamic Programming Approach," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 41(124), pages 345-360.
    9. Nusrat Jahan, 2022. "Macroeconomic Determinants of Corporate Credit Spreads: Evidence from Canada," Carleton Economic Papers 22-07, Carleton University, Department of Economics.
    10. Hailiang Yang, 2000. "An Integrated Risk Management Method: VaR Approach," Multinational Finance Journal, Multinational Finance Journal, vol. 4(3-4), pages 201-219, September.
    11. Nan Chen & S. G. Kou, 2009. "Credit Spreads, Optimal Capital Structure, And Implied Volatility With Endogenous Default And Jump Risk," Mathematical Finance, Wiley Blackwell, vol. 19(3), pages 343-378, July.
    12. Trueck, Stefan & Rachev, Svetlozar T., 2008. "Rating Based Modeling of Credit Risk," Elsevier Monographs, Elsevier, edition 1, number 9780123736833.
    13. Scott D. Aguais & Anthony M. Santomero, 1997. "Incorporating New Fixed Income Approaches into Commercial Loan Valuation," Center for Financial Institutions Working Papers 98-06, Wharton School Center for Financial Institutions, University of Pennsylvania.
    14. repec:zbw:rwirep:0243 is not listed on IDEAS
    15. SOLNIK, Bruno & COLLIN-DUFRESNE, Pierre, 2000. "On the term structure of default premia in the Swap and Libor markets," HEC Research Papers Series 704, HEC Paris.
    16. Regis Houssou & Olivier Besson, 2010. "Indifference of Defaultable Bonds with Stochastic Intensity models," Papers 1003.4118, arXiv.org.
    17. Michael C. Munnix & Rudi Schafer & Thomas Guhr, 2011. "A Random Matrix Approach to Credit Risk," Papers 1102.3900, arXiv.org, revised Jun 2011.
    18. Misha Beek & Michel Mandjes & Peter Spreij & Erik Winands, 2020. "Regime switching affine processes with applications to finance," Finance and Stochastics, Springer, vol. 24(2), pages 309-333, April.
    19. Hugo Storm & Thomas Heckelei & Ron C. Mittelhammer, 2016. "Bayesian estimation of non-stationary Markov models combining micro and macro data," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 43(2), pages 303-329.
    20. Wisniewski, Tomasz Piotr & Lambe, Brendan John, 2015. "Does economic policy uncertainty drive CDS spreads?," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 447-458.
    21. Chen, An-Sing & Chu, Hsiang-Hui & Hung, Pi-Hsia & Cheng, Miao-Sih, 2020. "Financial risk and acquirers' stockholder wealth in mergers and acquisitions," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:13:p:1461-:d:579808. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.