Modular production control using deep reinforcement learning: proximal policy optimization
Author
Abstract
Suggested Citation
DOI: 10.1007/s10845-021-01778-z
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Yu-Fang Wang, 2020. "Adaptive job shop scheduling strategy based on weighted Q-learning algorithm," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 417-432, February.
- Juan Pablo Usuga Cadavid & Samir Lamouri & Bernard Grabot & Robert Pellerin & Arnaud Fortin, 2020. "Machine learning applied in production planning and control: a state-of-the-art in the era of industry 4.0," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1531-1558, August.
- Andreas Kuhnle & Jan-Philipp Kaiser & Felix Theiß & Nicole Stricker & Gisela Lanza, 2021. "Designing an adaptive production control system using reinforcement learning," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 855-876, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Konstantinos S. Boulas & Georgios D. Dounias & Chrissoleon T. Papadopoulos, 2023. "A hybrid evolutionary algorithm approach for estimating the throughput of short reliable approximately balanced production lines," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 823-852, February.
- Masoud Zafarzadeh & Magnus Wiktorsson & Jannicke Baalsrud Hauge, 2021. "A Systematic Review on Technologies for Data-Driven Production Logistics: Their Role from a Holistic and Value Creation Perspective," Logistics, MDPI, vol. 5(2), pages 1-32, April.
- Kyu Tae Park & Jinho Yang & Sang Do Noh, 2021. "VREDI: virtual representation for a digital twin application in a work-center-level asset administration shell," Journal of Intelligent Manufacturing, Springer, vol. 32(2), pages 501-544, February.
- Lemstra, Mary Anny Moraes Silva & de Mesquita, Marco Aurélio, 2023. "Industry 4.0: a tertiary literature review," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).
- Guo, Daqiang & Li, Mingxing & Lyu, Zhongyuan & Kang, Kai & Wu, Wei & Zhong, Ray Y. & Huang, George Q., 2021. "Synchroperation in industry 4.0 manufacturing," International Journal of Production Economics, Elsevier, vol. 238(C).
- Rami Naimi & Maroua Nouiri & Olivier Cardin, 2021. "A Q-Learning Rescheduling Approach to the Flexible Job Shop Problem Combining Energy and Productivity Objectives," Sustainability, MDPI, vol. 13(23), pages 1-36, November.
- Christian Meske & Enrico Bunde, 2023. "Design Principles for User Interfaces in AI-Based Decision Support Systems: The Case of Explainable Hate Speech Detection," Information Systems Frontiers, Springer, vol. 25(2), pages 743-773, April.
- Hien Nguyen Ngoc & Ganix Lasa & Ion Iriarte, 2022. "Human-centred design in industry 4.0: case study review and opportunities for future research," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 35-76, January.
- Alisha Lakra & Shubhkirti Gupta & Ravi Ranjan & Sushanta Tripathy & Deepak Singhal, 2022. "The Significance of Machine Learning in the Manufacturing Sector: An ISM Approach," Logistics, MDPI, vol. 6(4), pages 1-15, October.
- Shaohua Huang & Yu Guo & Nengjun Yang & Shanshan Zha & Daoyuan Liu & Weiguang Fang, 2021. "A weighted fuzzy C-means clustering method with density peak for anomaly detection in IoT-enabled manufacturing process," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 1845-1861, October.
- Xiaohan Li & Chenwei Ma & Yang Lv, 2022. "Environmental Cost Control of Manufacturing Enterprises via Machine Learning under Data Warehouse," Sustainability, MDPI, vol. 14(18), pages 1-21, September.
- Cruz, Yarens J. & Villalonga, Alberto & Castaño, Fernando & Rivas, Marcelino & Haber, Rodolfo E., 2024. "Automated machine learning methodology for optimizing production processes in small and medium-sized enterprises," Operations Research Perspectives, Elsevier, vol. 12(C).
- Tan, Daniel & Suvarna, Manu & Shee Tan, Yee & Li, Jie & Wang, Xiaonan, 2021. "A three-step machine learning framework for energy profiling, activity state prediction and production estimation in smart process manufacturing," Applied Energy, Elsevier, vol. 291(C).
- Chenxi Yuan & Guoyan Li & Sagar Kamarthi & Xiaoning Jin & Mohsen Moghaddam, 2022. "Trends in intelligent manufacturing research: a keyword co-occurrence network based review," Journal of Intelligent Manufacturing, Springer, vol. 33(2), pages 425-439, February.
- Mateo Ramos-Merino & Juan M. Santos-Gago & Luis M. Álvarez-Sabucedo, 2021. "Fuzzy traceability: using domain knowledge information to estimate the followed route of process instances in non-exhaustive monitoring environments," Journal of Intelligent Manufacturing, Springer, vol. 32(8), pages 2235-2255, December.
- Behice Meltem Kayhan & Gokalp Yildiz, 2023. "Reinforcement learning applications to machine scheduling problems: a comprehensive literature review," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 905-929, March.
- Marco Wurster & Marius Michel & Marvin Carl May & Andreas Kuhnle & Nicole Stricker & Gisela Lanza, 2022. "Modelling and condition-based control of a flexible and hybrid disassembly system with manual and autonomous workstations using reinforcement learning," Journal of Intelligent Manufacturing, Springer, vol. 33(2), pages 575-591, February.
- Ming Zhang & Yang Lu & Youxi Hu & Nasser Amaitik & Yuchun Xu, 2022. "Dynamic Scheduling Method for Job-Shop Manufacturing Systems by Deep Reinforcement Learning with Proximal Policy Optimization," Sustainability, MDPI, vol. 14(9), pages 1-16, April.
- Mansoureh Maadi & Hadi Akbarzadeh Khorshidi & Uwe Aickelin, 2021. "A Review on Human–AI Interaction in Machine Learning and Insights for Medical Applications," IJERPH, MDPI, vol. 18(4), pages 1-27, February.
- Tan Ching Ng & Sie Yee Lau & Morteza Ghobakhloo & Masood Fathi & Meng Suan Liang, 2022. "The Application of Industry 4.0 Technological Constituents for Sustainable Manufacturing: A Content-Centric Review," Sustainability, MDPI, vol. 14(7), pages 1-21, April.
More about this item
Keywords
Modular production; Production control; Production scheduling; Deep reinforcement learning; Proximal policy optimization; Automotive industry;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:32:y:2021:i:8:d:10.1007_s10845-021-01778-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.