IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v60y2022i13p4316-4341.html
   My bibliography  Save this article

Deep reinforcement learning in production systems: a systematic literature review

Author

Listed:
  • Marcel Panzer
  • Benedict Bender

Abstract

Shortening product development cycles and fully customisable products pose major challenges for production systems. These not only have to cope with an increased product diversity but also enable high throughputs and provide a high adaptability and robustness to process variations and unforeseen incidents. To overcome these challenges, deep Reinforcement Learning (RL) has been increasingly applied for the optimisation of production systems. Unlike other machine learning methods, deep RL operates on recently collected sensor-data in direct interaction with its environment and enables real-time responses to system changes. Although deep RL is already being deployed in production systems, a systematic review of the results has not yet been established. The main contribution of this paper is to provide researchers and practitioners an overview of applications and to motivate further implementations and research of deep RL supported production systems. Findings reveal that deep RL is applied in a variety of production domains, contributing to data-driven and flexible processes. In most applications, conventional methods were outperformed and implementation efforts or dependence on human experience were reduced. Nevertheless, future research must focus more on transferring the findings to real-world systems to analyse safety aspects and demonstrate reliability under prevailing conditions.

Suggested Citation

  • Marcel Panzer & Benedict Bender, 2022. "Deep reinforcement learning in production systems: a systematic literature review," International Journal of Production Research, Taylor & Francis Journals, vol. 60(13), pages 4316-4341, July.
  • Handle: RePEc:taf:tprsxx:v:60:y:2022:i:13:p:4316-4341
    DOI: 10.1080/00207543.2021.1973138
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2021.1973138
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2021.1973138?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Minhyeok Lee, 2023. "Game-Theoretical Analysis of Reviewer Rewards in Peer-Review Journal Systems: Analysis and Experimental Evaluation using Deep Reinforcement Learning," Papers 2305.12088, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:60:y:2022:i:13:p:4316-4341. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.