IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v32y2021i8d10.1007_s10845-020-01638-2.html
   My bibliography  Save this article

Multi-objective optimization of the resistance spot welding process using a hybrid approach

Author

Listed:
  • Dawei Zhao

    (South Ural State University
    Xi’an Jiaotong University)

  • Mikhail Ivanov

    (South Ural State University)

  • Yuanxun Wang

    (Huazhong University of Science and Technology)

  • Dongjie Liang

    (Guangxi Zhuang Autonomous Region Institute of Metrology and Test)

  • Wenhao Du

    (Hunan Institute of Engineering)

Abstract

This study proposed an approach to optimize the process parameters using the entropy weight method combining regression analysis in the resistance spot welding process. Based on the central composite experimental design, tests were carried out with three levels of process parameters for spot-welded titanium alloy sheets. Multiple quality characteristics, namely nugget diameter, maximum displacement, tensile shear load, and failure energy, were converted into a comprehensive welding quality index. The weight for each quality index to obtain the comprehensive welding quality index was determined based on the grey entropy method. The welding heat input for each welding joints was calculated based on the dynamic power signal in the welding process. The mathematical model correlating process parameters and the comprehensive welding quality index was established on the basis of regression analysis. The relationship between the welding process parameters and welding heat was also quantified using a regression model. The effects of welding process parameters on welding quality and welding heat were also discussed. To optimize multi-performance characteristics, the desirability function was employed. The verification test results proved that the method proposed in this paper effectively optimized the welding parameters and kept the welding heat input as low as possible at the same time. Welding current is the most significant parameter affecting the welding quality followed by welding time. This can be owing to its direct influence on the amount of heat supplied to the welding zone during the welding process. The method proposed in this study can serve as a guidance and recommendation for resistance spot welding welders to guarantee welding quality and meet the needs of high production and effective energy saving.

Suggested Citation

  • Dawei Zhao & Mikhail Ivanov & Yuanxun Wang & Dongjie Liang & Wenhao Du, 2021. "Multi-objective optimization of the resistance spot welding process using a hybrid approach," Journal of Intelligent Manufacturing, Springer, vol. 32(8), pages 2219-2234, December.
  • Handle: RePEc:spr:joinma:v:32:y:2021:i:8:d:10.1007_s10845-020-01638-2
    DOI: 10.1007/s10845-020-01638-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-020-01638-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-020-01638-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pauline Ong & Choon Sin Ho & Desmond Daniel Vui Sheng Chin & Chee Kiong Sia & Chuan Huat Ng & Md Saidin Wahab & Abduladim Salem Bala, 2019. "Diameter prediction and optimization of hot extrusion-synthesized polypropylene filament using statistical and soft computing techniques," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1957-1972, April.
    2. Hamed Pashazadeh & Yousof Gheisari & Mohsen Hamedi, 2016. "Statistical modeling and optimization of resistance spot welding process parameters using neural networks and multi-objective genetic algorithm," Journal of Intelligent Manufacturing, Springer, vol. 27(3), pages 549-559, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiyoung Jung & Kundo Park & Byungjin Cho & Jinkyoo Park & Seunghwa Ryu, 2023. "Optimization of injection molding process using multi-objective bayesian optimization and constrained generative inverse design networks," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3623-3636, December.
    2. Sergey Butsykin & Anton Gordynets & Alexey Kiselev & Mikhail Slobodyan, 2023. "Evaluation of the reliability of resistance spot welding control via on-line monitoring of dynamic resistance," Journal of Intelligent Manufacturing, Springer, vol. 34(7), pages 3109-3129, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei Zhou & Tianjian Li & Wenjia Zheng & Zhongdian Zhang & Zhenglong Lei & Laijun Wu & Shiliang Zhu & Wenming Wang, 2022. "Online monitoring of resistance spot welding electrode wear state based on dynamic resistance," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 91-101, January.
    2. Pauline Ong & Chon Haow Chong & Mohammad Zulafif Rahim & Woon Kiow Lee & Chee Kiong Sia & Muhammad Ariff Haikal Ahmad, 2020. "Intelligent approach for process modelling and optimization on electrical discharge machining of polycrystalline diamond," Journal of Intelligent Manufacturing, Springer, vol. 31(1), pages 227-247, January.
    3. Ohyung Kwon & Hyung Giun Kim & Min Ji Ham & Wonrae Kim & Gun-Hee Kim & Jae-Hyung Cho & Nam Il Kim & Kangil Kim, 2020. "A deep neural network for classification of melt-pool images in metal additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 375-386, February.
    4. Dawei Zhao & Mikhail Ivanov & Yuanxun Wang & Wenhao Du, 2021. "Welding quality evaluation of resistance spot welding based on a hybrid approach," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 1819-1832, October.
    5. Liang Tian & Yu Luo, 2020. "A study on the prediction of inherent deformation in fillet-welded joint using support vector machine and genetic optimization algorithm," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 575-596, March.
    6. Sergey Butsykin & Anton Gordynets & Alexey Kiselev & Mikhail Slobodyan, 2023. "Evaluation of the reliability of resistance spot welding control via on-line monitoring of dynamic resistance," Journal of Intelligent Manufacturing, Springer, vol. 34(7), pages 3109-3129, October.
    7. Baifan Zhou & Tim Pychynski & Markus Reischl & Evgeny Kharlamov & Ralf Mikut, 2022. "Machine learning with domain knowledge for predictive quality monitoring in resistance spot welding," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 1139-1163, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:32:y:2021:i:8:d:10.1007_s10845-020-01638-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.