IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v28y2017i2d10.1007_s10845-014-0999-z.html
   My bibliography  Save this article

An inverse model for injection molding of optical lens using artificial neural network coupled with genetic algorithm

Author

Listed:
  • Kuo-Ming Tsai

    (National Chin-Yi University of Technology)

  • Hao-Jhih Luo

    (National Chin-Yi University of Technology)

Abstract

This study combined the artificial neural network (ANN) with a genetic algorithm (GA) to establish an inverse model of injection molding for optical lens form accuracy. The Taguchi parameter design was used for screening experiments of the injection molding parameters, and the significant factors influencing lens form accuracy were found to be mold temperature, cooling time, packing pressure, and packing time. These significant factors were used for full factorial experiments, and the experimental data then were used as training and checking data sets for the ANN prediction model. Finally, the ANN prediction model was combined with the GA to construct an inverse model of injection molding. Lens form accuracies of 0.5, 0.7, and $$1\,\upmu \hbox {m}$$ 1 μ m were taken as examples for validation, and when the error of the set lens form accuracy target value was within 2 % there were 26, 17, and six sets of the injection molding parameters, respectively, that met the desired form accuracy obtained by using the inverse model. The result indicated that the proposed strategy was successful in identifying process parameters for products with reliable accuracy. In addition, using the GA as a global search algorithm for the optimal solution could further optimize the Taguchi optimal process parameters. The validation experiments revealed that the form accuracy of the lens was improved.

Suggested Citation

  • Kuo-Ming Tsai & Hao-Jhih Luo, 2017. "An inverse model for injection molding of optical lens using artificial neural network coupled with genetic algorithm," Journal of Intelligent Manufacturing, Springer, vol. 28(2), pages 473-487, February.
  • Handle: RePEc:spr:joinma:v:28:y:2017:i:2:d:10.1007_s10845-014-0999-z
    DOI: 10.1007/s10845-014-0999-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-014-0999-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-014-0999-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. İhsan Yanıkoğlu & Erinç Albey & Serkan Okçuoğlu, 2022. "Robust Parameter Design and Optimization for Quality Engineering," SN Operations Research Forum, Springer, vol. 3(1), pages 1-36, March.
    2. Jiyoung Jung & Kundo Park & Byungjin Cho & Jinkyoo Park & Seunghwa Ryu, 2023. "Optimization of injection molding process using multi-objective bayesian optimization and constrained generative inverse design networks," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3623-3636, December.
    3. Myeongso Kim & Minyoung Lee & Minjeong An & Hongchul Lee, 2020. "Effective automatic defect classification process based on CNN with stacking ensemble model for TFT-LCD panel," Journal of Intelligent Manufacturing, Springer, vol. 31(5), pages 1165-1174, June.
    4. Ahmed Ktari & Mohamed El Mansori, 2022. "Digital twin of functional gating system in 3D printed molds for sand casting using a neural network," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 897-909, March.
    5. Ohyung Kwon & Hyung Giun Kim & Min Ji Ham & Wonrae Kim & Gun-Hee Kim & Jae-Hyung Cho & Nam Il Kim & Kangil Kim, 2020. "A deep neural network for classification of melt-pool images in metal additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 375-386, February.
    6. Shengrui Yu & Tianfeng Zhang & Yun Zhang & Zhigao Huang & Huang Gao & Wen Han & Lih-Sheng Turng & Huamin Zhou, 2022. "Intelligent setting of process parameters for injection molding based on case-based reasoning of molding features," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 77-89, January.
    7. Liang Hou & Roger J. Jiao, 2020. "Data-informed inverse design by product usage information: a review, framework and outlook," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 529-552, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:28:y:2017:i:2:d:10.1007_s10845-014-0999-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.