IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v33y2022i1d10.1007_s10845-020-01658-y.html
   My bibliography  Save this article

Intelligent setting of process parameters for injection molding based on case-based reasoning of molding features

Author

Listed:
  • Shengrui Yu

    (Jingdezhen Ceramic Institute
    University of Wisconsin-Madison)

  • Tianfeng Zhang

    (Jingdezhen Ceramic Institute)

  • Yun Zhang

    (Huazhong University of Science and Technology)

  • Zhigao Huang

    (Huazhong University of Science and Technology)

  • Huang Gao

    (Huazhong University of Science and Technology)

  • Wen Han

    (Jingdezhen Ceramic Institute)

  • Lih-Sheng Turng

    (University of Wisconsin-Madison
    University of Wisconsin-Madison)

  • Huamin Zhou

    (Huazhong University of Science and Technology)

Abstract

Process parameters of injection molding are the key factors affecting the final quality and the molding efficiency of products. In the traditional automatic setting of process parameters based on case-based reasoning, only the geometric features of molds are considered, which may not be the representative feature of products and cause the reasoning process to fail. This problem of failure manifests itself in that the molding process parameters inferred by the reasoning system may be very different between molds with similar geometric features or very similar between molds with different geometric features. Therefore, this paper proposes a case-based-reasoning method based on molding features in order to overcome this problem by a method of dimensionality reduction, composed of three stages which (1) obtain the injection pressure profile data through actual injection molding or filling simulation analysis, (2) calculate the similarity of the pressure profiles between target case and each of source cases in case database using the nearest neighbor method, and sort according to the value of similarity, (3) find the case with a maximum of similarity out as the one closest to the target case, and take the process parameters of the most similar case as the solution of the target case according to case modification strategies. This method simplifies the high-dimensional molding features to the pressure profile at the injection location with two-dimensional data features. Experiments show that the new method has a high retrieval accuracy and sensitivity. Moreover, even slight differences in molding can be captured easily.

Suggested Citation

  • Shengrui Yu & Tianfeng Zhang & Yun Zhang & Zhigao Huang & Huang Gao & Wen Han & Lih-Sheng Turng & Huamin Zhou, 2022. "Intelligent setting of process parameters for injection molding based on case-based reasoning of molding features," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 77-89, January.
  • Handle: RePEc:spr:joinma:v:33:y:2022:i:1:d:10.1007_s10845-020-01658-y
    DOI: 10.1007/s10845-020-01658-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-020-01658-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-020-01658-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kuo-Ming Tsai & Hao-Jhih Luo, 2017. "An inverse model for injection molding of optical lens using artificial neural network coupled with genetic algorithm," Journal of Intelligent Manufacturing, Springer, vol. 28(2), pages 473-487, February.
    2. Zhigang Jiang & Ya Jiang & Yan Wang & Hua Zhang & Huajun Cao & Guangdong Tian, 2019. "A hybrid approach of rough set and case-based reasoning to remanufacturing process planning," Journal of Intelligent Manufacturing, Springer, vol. 30(1), pages 19-32, January.
    3. Mohammad Reza Khosravani & Sara Nasiri, 2020. "Injection molding manufacturing process: review of case-based reasoning applications," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 847-864, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiyoung Jung & Kundo Park & Byungjin Cho & Jinkyoo Park & Seunghwa Ryu, 2023. "Optimization of injection molding process using multi-objective bayesian optimization and constrained generative inverse design networks," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3623-3636, December.
    2. Ahmed Ktari & Mohamed El Mansori, 2022. "Digital twin of functional gating system in 3D printed molds for sand casting using a neural network," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 897-909, March.
    3. Rui Wang & Xiangyu Guo & Shisheng Zhong & Gaolei Peng & Lin Wang, 2022. "Decision rule mining for machining method chains based on rough set theory," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 799-807, March.
    4. İhsan Yanıkoğlu & Erinç Albey & Serkan Okçuoğlu, 2022. "Robust Parameter Design and Optimization for Quality Engineering," SN Operations Research Forum, Springer, vol. 3(1), pages 1-36, March.
    5. Wenkang Zhang & Yufan Zheng & Rafiq Ahmad, 2023. "The integrated process planning and scheduling of flexible job-shop-type remanufacturing systems using improved artificial bee colony algorithm," Journal of Intelligent Manufacturing, Springer, vol. 34(7), pages 2963-2988, October.
    6. Longhua Xu & Chuanzhen Huang & Chengwu Li & Jun Wang & Hanlian Liu & Xiaodan Wang, 2021. "An improved case based reasoning method and its application in estimation of surface quality toward intelligent machining," Journal of Intelligent Manufacturing, Springer, vol. 32(1), pages 313-327, January.
    7. Wenjie Wang & Guangdong Tian & Gang Yuan & Duc Truong Pham, 2023. "Energy-time tradeoffs for remanufacturing system scheduling using an invasive weed optimization algorithm," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 1065-1083, March.
    8. Chao Ke & Xiuyan Pan & Pan Wan & Zixi Huang & Zhigang Jiang, 2023. "An Intelligent Redesign Method for Used Products Based on Digital Twin," Sustainability, MDPI, vol. 15(12), pages 1-19, June.
    9. Ohyung Kwon & Hyung Giun Kim & Min Ji Ham & Wonrae Kim & Gun-Hee Kim & Jae-Hyung Cho & Nam Il Kim & Kangil Kim, 2020. "A deep neural network for classification of melt-pool images in metal additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 375-386, February.
    10. Qihao Liu & Xinyu Li & Liang Gao, 2021. "Mathematical modeling and a hybrid evolutionary algorithm for process planning," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 781-797, March.
    11. Liang Hou & Roger J. Jiao, 2020. "Data-informed inverse design by product usage information: a review, framework and outlook," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 529-552, March.
    12. Yanbin Du & Guohua He & Bo Li & Zhijie Zhou & Guoao Wu, 2022. "In-service machine tool remanufacturing: a sustainable resource-saving and high-valued recovery approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 1335-1358, January.
    13. Elham Sharifi & Atanu Chaudhuri & Brian Vejrum Waehrens & Lasse Guldborg Staal & Saeed Davoudabadi Farahani, 2021. "Assessing the Suitability of Freeform Injection Molding for Low Volume Injection Molded Parts: A Design Science Approach," Sustainability, MDPI, vol. 13(3), pages 1-19, January.
    14. Shengqiang Li & Hua Zhang & Wei Yan & Zhigang Jiang, 2021. "A hybrid method of blockchain and case-based reasoning for remanufacturing process planning," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1389-1399, June.
    15. Guoshen Wu & Zhigang Ren & Jiajun Li & Zongze Wu, 2023. "Optimal Robust Tracking Control of Injection Velocity in an Injection Molding Machine," Mathematics, MDPI, vol. 11(12), pages 1-17, June.
    16. Mohammad Reza Khosravani & Sara Nasiri, 2020. "Injection molding manufacturing process: review of case-based reasoning applications," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 847-864, April.
    17. Roman Stryczek & Kamil Wyrobek, 2021. "Heuristic techniques for modelling machine spinning processes," Journal of Intelligent Manufacturing, Springer, vol. 32(4), pages 1189-1206, April.
    18. Myeongso Kim & Minyoung Lee & Minjeong An & Hongchul Lee, 2020. "Effective automatic defect classification process based on CNN with stacking ensemble model for TFT-LCD panel," Journal of Intelligent Manufacturing, Springer, vol. 31(5), pages 1165-1174, June.
    19. Wei Zhou & Chao Ke, 2022. "A Mass-Customization-Based Remanufacturing Scheme Design Method for Used Products," Sustainability, MDPI, vol. 14(16), pages 1-22, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:33:y:2022:i:1:d:10.1007_s10845-020-01658-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.