IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v31y2020i4d10.1007_s10845-019-01481-0.html
   My bibliography  Save this article

Injection molding manufacturing process: review of case-based reasoning applications

Author

Listed:
  • Mohammad Reza Khosravani

    (University of Siegen)

  • Sara Nasiri

    (University of Siegen)

Abstract

Although manufacturing technology has been developing rapidly, injection molding is still widely used for fabricating plastic parts with complex geometries and precise dimensions. Since the occurrence of faults in injection molding is inevitable, process optimization is desirable. Artificial intelligence (AI) methods are being successfully used for optimization in different branches of science and technology. In this paper, we review the application of one such method, case-based reasoning (CBR), to injection molding. CBR is an AI approach for knowledge representation and manipulation which considers successful solutions of past problems that are likely to serve as candidate solutions for a given problem. This method is being used increasingly in academic and industrial applications. Here, we review CBR systems that are used in injection molding for different purposes, such as process design, processing parameters, fault diagnose, and enhancement of quality control. In addition, we discuss trends for utilization of CBR in different phases of injection molding. The most significant challenges associated with application of CBR to injection molding are also discussed. Finally, the review is concluded by contemplating on some open research areas and future prospects.

Suggested Citation

  • Mohammad Reza Khosravani & Sara Nasiri, 2020. "Injection molding manufacturing process: review of case-based reasoning applications," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 847-864, April.
  • Handle: RePEc:spr:joinma:v:31:y:2020:i:4:d:10.1007_s10845-019-01481-0
    DOI: 10.1007/s10845-019-01481-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-019-01481-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-019-01481-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhigang Jiang & Ya Jiang & Yan Wang & Hua Zhang & Huajun Cao & Guangdong Tian, 2019. "A hybrid approach of rough set and case-based reasoning to remanufacturing process planning," Journal of Intelligent Manufacturing, Springer, vol. 30(1), pages 19-32, January.
    2. Andrew Kusiak, 2017. "Smart manufacturing must embrace big data," Nature, Nature, vol. 544(7648), pages 23-25, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiyoung Jung & Kundo Park & Byungjin Cho & Jinkyoo Park & Seunghwa Ryu, 2023. "Optimization of injection molding process using multi-objective bayesian optimization and constrained generative inverse design networks," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3623-3636, December.
    2. Elham Sharifi & Atanu Chaudhuri & Brian Vejrum Waehrens & Lasse Guldborg Staal & Saeed Davoudabadi Farahani, 2021. "Assessing the Suitability of Freeform Injection Molding for Low Volume Injection Molded Parts: A Design Science Approach," Sustainability, MDPI, vol. 13(3), pages 1-19, January.
    3. Shengqiang Li & Hua Zhang & Wei Yan & Zhigang Jiang, 2021. "A hybrid method of blockchain and case-based reasoning for remanufacturing process planning," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1389-1399, June.
    4. Guoshen Wu & Zhigang Ren & Jiajun Li & Zongze Wu, 2023. "Optimal Robust Tracking Control of Injection Velocity in an Injection Molding Machine," Mathematics, MDPI, vol. 11(12), pages 1-17, June.
    5. Shengrui Yu & Tianfeng Zhang & Yun Zhang & Zhigao Huang & Huang Gao & Wen Han & Lih-Sheng Turng & Huamin Zhou, 2022. "Intelligent setting of process parameters for injection molding based on case-based reasoning of molding features," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 77-89, January.
    6. Roman Stryczek & Kamil Wyrobek, 2021. "Heuristic techniques for modelling machine spinning processes," Journal of Intelligent Manufacturing, Springer, vol. 32(4), pages 1189-1206, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rui Wang & Xiangyu Guo & Shisheng Zhong & Gaolei Peng & Lin Wang, 2022. "Decision rule mining for machining method chains based on rough set theory," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 799-807, March.
    2. Wenkang Zhang & Yufan Zheng & Rafiq Ahmad, 2023. "The integrated process planning and scheduling of flexible job-shop-type remanufacturing systems using improved artificial bee colony algorithm," Journal of Intelligent Manufacturing, Springer, vol. 34(7), pages 2963-2988, October.
    3. Zhao, Guanjia & Cui, Zhipeng & Xu, Jing & Liu, Wenhao & Ma, Suxia, 2022. "Hybrid modeling-based digital twin for performance optimization with flexible operation in the direct air-cooling power unit," Energy, Elsevier, vol. 254(PC).
    4. Maximilian Zarte & Agnes Pechmann & Isabel L. Nunes, 2022. "Problems, Needs, and Challenges of a Sustainability-Based Production Planning," Sustainability, MDPI, vol. 14(7), pages 1-19, March.
    5. Shanhe Lou & Yixiong Feng & Hao Zheng & Yicong Gao & Jianrong Tan, 2020. "Data-driven customer requirements discernment in the product lifecycle management via intuitionistic fuzzy sets and electroencephalogram," Journal of Intelligent Manufacturing, Springer, vol. 31(7), pages 1721-1736, October.
    6. Juan Pablo Usuga Cadavid & Samir Lamouri & Bernard Grabot & Robert Pellerin & Arnaud Fortin, 2020. "Machine learning applied in production planning and control: a state-of-the-art in the era of industry 4.0," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1531-1558, August.
    7. Longhua Xu & Chuanzhen Huang & Chengwu Li & Jun Wang & Hanlian Liu & Xiaodan Wang, 2021. "An improved case based reasoning method and its application in estimation of surface quality toward intelligent machining," Journal of Intelligent Manufacturing, Springer, vol. 32(1), pages 313-327, January.
    8. Lu, Shixiang & Xu, Qifa & Jiang, Cuixia & Liu, Yezheng & Kusiak, Andrew, 2022. "Probabilistic load forecasting with a non-crossing sparse-group Lasso-quantile regression deep neural network," Energy, Elsevier, vol. 242(C).
    9. Wang, Di & He, Bin & Hu, Zhimu, 2024. "Financial technology and firm productivity: Evidence from Chinese listed enterprises," Finance Research Letters, Elsevier, vol. 63(C).
    10. Julian Senoner & Torbjørn Netland & Stefan Feuerriegel, 2022. "Using Explainable Artificial Intelligence to Improve Process Quality: Evidence from Semiconductor Manufacturing," Management Science, INFORMS, vol. 68(8), pages 5704-5723, August.
    11. Vedpal Arya & S. G. Deshmukh & Naresh Bhatnagar, 2019. "Product quality in an inclusive manufacturing system: some considerations," Journal of Intelligent Manufacturing, Springer, vol. 30(8), pages 2871-2884, December.
    12. Senthil Sundaramoorthy & Dipti Kamath & Sachin Nimbalkar & Christopher Price & Thomas Wenning & Joseph Cresko, 2023. "Energy Efficiency as a Foundational Technology Pillar for Industrial Decarbonization," Sustainability, MDPI, vol. 15(12), pages 1-24, June.
    13. Barbara Aquilani & Michela Piccarozzi & Tindara Abbate & Anna Codini, 2020. "The Role of Open Innovation and Value Co-creation in the Challenging Transition from Industry 4.0 to Society 5.0: Toward a Theoretical Framework," Sustainability, MDPI, vol. 12(21), pages 1-21, October.
    14. Timo Bänziger & Andreas Kunz & Konrad Wegener, 2020. "Optimizing human–robot task allocation using a simulation tool based on standardized work descriptions," Journal of Intelligent Manufacturing, Springer, vol. 31(7), pages 1635-1648, October.
    15. Wang, Linhui & Chen, Qi & Dong, Zhiqing & Cheng, Lu, 2024. "The role of industrial intelligence in peaking carbon emissions in China," Technological Forecasting and Social Change, Elsevier, vol. 199(C).
    16. Wenjie Wang & Guangdong Tian & Gang Yuan & Duc Truong Pham, 2023. "Energy-time tradeoffs for remanufacturing system scheduling using an invasive weed optimization algorithm," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 1065-1083, March.
    17. Guo, Daqiang & Li, Mingxing & Lyu, Zhongyuan & Kang, Kai & Wu, Wei & Zhong, Ray Y. & Huang, George Q., 2021. "Synchroperation in industry 4.0 manufacturing," International Journal of Production Economics, Elsevier, vol. 238(C).
    18. Chao Ke & Xiuyan Pan & Pan Wan & Zixi Huang & Zhigang Jiang, 2023. "An Intelligent Redesign Method for Used Products Based on Digital Twin," Sustainability, MDPI, vol. 15(12), pages 1-19, June.
    19. Jiyoung Jung & Kundo Park & Byungjin Cho & Jinkyoo Park & Seunghwa Ryu, 2023. "Optimization of injection molding process using multi-objective bayesian optimization and constrained generative inverse design networks," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3623-3636, December.
    20. Qihao Liu & Xinyu Li & Liang Gao, 2021. "Mathematical modeling and a hybrid evolutionary algorithm for process planning," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 781-797, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:31:y:2020:i:4:d:10.1007_s10845-019-01481-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.