Learning from Crowdsourced Multi-labeling: A Variational Bayesian Approach
Author
Abstract
Suggested Citation
DOI: 10.1287/isre.2021.1000
Download full text from publisher
References listed on IDEAS
- A. P. Dawid & A. M. Skene, 1979. "Maximum Likelihood Estimation of Observer Error‐Rates Using the EM Algorithm," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 28(1), pages 20-28, March.
- David M. Blei & Alp Kucukelbir & Jon D. McAuliffe, 2017. "Variational Inference: A Review for Statisticians," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 859-877, April.
- Grigorios Tsoumakas & Ioannis Katakis, 2007. "Multi-Label Classification: An Overview," International Journal of Data Warehousing and Mining (IJDWM), IGI Global, vol. 3(3), pages 1-13, July.
- Guest Editors: Hemant Jain & Balaji Padmanabhan & Paul A. Pavlou & Raghu T. Santanam, 2018. "all for Papers—Special Issue of Information Systems Research —Humans, Algorithms, and Augmented Intelligence: The Future of Work, Organizations, and Society," Information Systems Research, INFORMS, vol. 29(1), pages 250-251, March.
- David R. Karger & Sewoong Oh & Devavrat Shah, 2014. "Budget-Optimal Task Allocation for Reliable Crowdsourcing Systems," Operations Research, INFORMS, vol. 62(1), pages 1-24, February.
- Michael Luca & Georgios Zervas, 2016. "Fake It Till You Make It: Reputation, Competition, and Yelp Review Fraud," Management Science, INFORMS, vol. 62(12), pages 3412-3427, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hemant Jain & Balaji Padmanabhan & Paul A. Pavlou & T. S. Raghu, 2021. "Editorial for the Special Section on Humans, Algorithms, and Augmented Intelligence: The Future of Work, Organizations, and Society," Information Systems Research, INFORMS, vol. 32(3), pages 675-687, September.
- Ruyi Ge & Zhiqiang (Eric) Zheng & Xuan Tian & Li Liao, 2021. "Human–Robot Interaction: When Investors Adjust the Usage of Robo-Advisors in Peer-to-Peer Lending," Information Systems Research, INFORMS, vol. 32(3), pages 774-785, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tomer Geva & Maytal Saar‐Tsechansky, 2021. "Who Is a Better Decision Maker? Data‐Driven Expert Ranking Under Unobserved Quality," Production and Operations Management, Production and Operations Management Society, vol. 30(1), pages 127-144, January.
- Marios Kokkodis, 2021. "Dynamic, Multidimensional, and Skillset-Specific Reputation Systems for Online Work," Information Systems Research, INFORMS, vol. 32(3), pages 688-712, September.
- Qian, Yang & Ling, Haifeng & Meng, Xiangrui & Jiang, Yuanchun & Chai, Yidong & Liu, Yezheng, 2024. "Voice of the Professional: Acquiring competitive intelligence from large-scale professional generated contents," Journal of Business Research, Elsevier, vol. 180(C).
- Hui, Xiang & Klein, Tobias & Stahl, Konrad, 2022.
"Learning from Online Ratings,"
CEPR Discussion Papers
17006, C.E.P.R. Discussion Papers.
- Xiang Hui & Tobias J. Klein & Konrad O. Stahl, 2024. "Learning from Online Ratings," CESifo Working Paper Series 11171, CESifo.
- Xiang Hui & Tobias J. Klein & Konrad Stahl, 2024. "Learning From Online Ratings," CRC TR 224 Discussion Paper Series crctr224_2024_532, University of Bonn and University of Mannheim, Germany.
- M. Narciso, 2022. "The Unreliability of Online Review Mechanisms," Journal of Consumer Policy, Springer, vol. 45(3), pages 349-368, September.
- Shen Liu & Hongyan Liu, 2021. "Tagging Items Automatically Based on Both Content Information and Browsing Behaviors," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 882-897, July.
- Gary Bolton & Kevin Breuer & Ben Greiner & Axel Ockenfels, 2023.
"Fixing feedback revision rules in online markets,"
Journal of Economics & Management Strategy, Wiley Blackwell, vol. 32(2), pages 247-256, April.
- Bolton, Gary & Breuer, Kevin & Greiner, Ben & Ockenfels, Axel, 2020. "Fixing feedback revision rules in online markets," Department for Strategy and Innovation Working Paper Series 01/2020, WU Vienna University of Economics and Business.
- Gary Bolton & Kevin Breuer & Ben Greiner & Axel Ockenfels, 2021. "Fixing Feedback Revision Rules in Online Markets," ECONtribute Discussion Papers Series 070, University of Bonn and University of Cologne, Germany.
- Luo, Nanyu & Ji, Feng & Han, Yuting & He, Jinbo & Zhang, Xiaoya, 2024. "Fitting item response theory models using deep learning computational frameworks," OSF Preprints tjxab, Center for Open Science.
- Liu, Jie & Ye, Zifeng & Chen, Kun & Zhang, Panpan, 2024. "Variational Bayesian inference for bipartite mixed-membership stochastic block model with applications to collaborative filtering," Computational Statistics & Data Analysis, Elsevier, vol. 189(C).
- Sungsik Park & Woochoel Shin & Jinhong Xie, 2021. "The Fateful First Consumer Review," Marketing Science, INFORMS, vol. 40(3), pages 481-507, May.
- Djohan Bonnet & Tifenn Hirtzlin & Atreya Majumdar & Thomas Dalgaty & Eduardo Esmanhotto & Valentina Meli & Niccolo Castellani & Simon Martin & Jean-François Nodin & Guillaume Bourgeois & Jean-Michel P, 2023. "Bringing uncertainty quantification to the extreme-edge with memristor-based Bayesian neural networks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
- Lingfang (Ivy) Li & Steven Tadelis & Xiaolan Zhou, 2020.
"Buying reputation as a signal of quality: Evidence from an online marketplace,"
RAND Journal of Economics, RAND Corporation, vol. 51(4), pages 965-988, December.
- Lingfang (Ivy) Li & Steven Tadelis & Xiaolan Zhou, 2016. "Buying Reputation as a Signal of Quality: Evidence from an Online Marketplace," NBER Working Papers 22584, National Bureau of Economic Research, Inc.
- Plé, Loïc & Demangeot, Catherine, 2020. "Social contagion of online and offline deviant behaviors and its value outcomes: The case of tourism ecosystems," Journal of Business Research, Elsevier, vol. 117(C), pages 886-896.
- Seokhyun Chung & Raed Al Kontar & Zhenke Wu, 2022. "Weakly Supervised Multi-output Regression via Correlated Gaussian Processes," INFORMS Joural on Data Science, INFORMS, vol. 1(2), pages 115-137, October.
- Bastian, Bob & Zucchella, Antonella, 2023. "Nascent entrepreneurs during start-up competitions: Between beauty contests and co-created problematization," Journal of Business Venturing Insights, Elsevier, vol. 20(C).
- Gary Koop & Dimitris Korobilis, 2023.
"Bayesian Dynamic Variable Selection In High Dimensions,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 1047-1074, August.
- Gary Koop & Dimitris Korobilis, 2018. "Bayesian dynamic variable selection in high dimensions," Papers 1809.03031, arXiv.org, revised May 2020.
- Korobilis, Dimitris & Koop, Gary, 2020. "Bayesian dynamic variable selection in high dimensions," MPRA Paper 100164, University Library of Munich, Germany.
- Gary Koop & Dimitris Korobilis, 2020. "Bayesian dynamic variable selection in high dimensions," Working Papers 2020_11, Business School - Economics, University of Glasgow.
- Ziqi Zhang & Xinye Zhao & Mehak Bindra & Peng Qiu & Xiuwei Zhang, 2024. "scDisInFact: disentangled learning for integration and prediction of multi-batch multi-condition single-cell RNA-sequencing data," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
- Gesche, Tobias, 2018. "Reference Price Shifts and Customer Antagonism: Evidence from Reviews for Online Auctions," VfS Annual Conference 2018 (Freiburg, Breisgau): Digital Economy 181650, Verein für Socialpolitik / German Economic Association.
- Dimitris Korobilis & Davide Pettenuzzo, 2020.
"Machine Learning Econometrics: Bayesian algorithms and methods,"
Working Papers
2020_09, Business School - Economics, University of Glasgow.
- Korobilis, Dimitris & Pettenuzzo, Davide, 2020. "Machine Learning Econometrics: Bayesian algorithms and methods," MPRA Paper 100165, University Library of Munich, Germany.
- Dimitris Korobilis & Davide Pettenuzzo, 2020. "Machine Learning Econometrics: Bayesian algorithms and methods," Papers 2004.11486, arXiv.org.
- Dimitris Korobilis & Davide Pettenuzzo, 2020. "Machine Learning Econometrics: Bayesian algorithms and methods," Working Papers 130, Brandeis University, Department of Economics and International Business School.
- Tim Kollmer & Andreas Eckhardt, 2023. "Dark Patterns," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 65(2), pages 201-208, April.
More about this item
Keywords
microtask crowdsourcing; multi-label annotation aggregation; worker quality estimation; hierarchical Bayesian model; variational inference;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orisre:v:32:y:2021:i:3:p:752-773. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.