IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v270y2018i3p1074-1085.html
   My bibliography  Save this article

Continuous multi-task Bayesian Optimisation with correlation

Author

Listed:
  • Pearce, Michael
  • Branke, Juergen

Abstract

This paper considers the problem of simultaneously identifying the optima for a (continuous or discrete) set of correlated tasks, where the performance of a particular input parameter on a particular task can only be estimated from (potentially noisy) samples. This has many applications, for example, identifying a stochastic algorithm’s optimal parameter settings for various tasks described by continuous feature values. We adapt the framework of Bayesian Optimisation to this problem. We propose a general multi-task optimisation framework and two myopic sampling procedures that determine task and parameter values for sampling, in order to efficiently find the best parameter setting for all tasks simultaneously. We show experimentally that our methods are much more efficient than collecting information randomly, and also more efficient than two other Bayesian multi-task optimisation algorithms from the literature.

Suggested Citation

  • Pearce, Michael & Branke, Juergen, 2018. "Continuous multi-task Bayesian Optimisation with correlation," European Journal of Operational Research, Elsevier, vol. 270(3), pages 1074-1085.
  • Handle: RePEc:eee:ejores:v:270:y:2018:i:3:p:1074-1085
    DOI: 10.1016/j.ejor.2018.03.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221718302261
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2018.03.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chi Ma & Hongquan Gui & Jialan Liu, 2023. "Self learning-empowered thermal error control method of precision machine tools based on digital twin," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 695-717, February.
    2. Donghun Lee, 2022. "Knowledge Gradient: Capturing Value of Information in Iterative Decisions under Uncertainty," Mathematics, MDPI, vol. 10(23), pages 1-20, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:270:y:2018:i:3:p:1074-1085. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.