The architecture development of Industry 4.0 compliant smart machine tool system (SMTS)
Author
Abstract
Suggested Citation
DOI: 10.1007/s10845-020-01539-4
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Mohamed Arezki Mellal & Edward J. Williams, 2016. "Parameter optimization of advanced machining processes using cuckoo optimization algorithm and hoopoe heuristic," Journal of Intelligent Manufacturing, Springer, vol. 27(5), pages 927-942, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Silvestro Vespoli & Guido Guizzi & Elisa Gebennini & Andrea Grassi, 2022. "A novel throughput control algorithm for semi-heterarchical industry 4.0 architecture," Annals of Operations Research, Springer, vol. 310(1), pages 201-221, March.
- Farzana Zahid & Awais Tanveer & Matthew M. Y. Kuo & Roopak Sinha, 2022. "A systematic mapping of semi-formal and formal methods in requirements engineering of industrial Cyber-Physical systems," Journal of Intelligent Manufacturing, Springer, vol. 33(6), pages 1603-1638, August.
- Kyu Tae Park & Sang Ho Lee & Sang Do Noh, 2022. "Information fusion and systematic logic library-generation methods for self-configuration of autonomous digital twin," Journal of Intelligent Manufacturing, Springer, vol. 33(8), pages 2409-2439, December.
- Kyu Tae Park & Jinho Yang & Sang Do Noh, 2021. "VREDI: virtual representation for a digital twin application in a work-center-level asset administration shell," Journal of Intelligent Manufacturing, Springer, vol. 32(2), pages 501-544, February.
- Chi Ma & Hongquan Gui & Jialan Liu, 2023. "Self learning-empowered thermal error control method of precision machine tools based on digital twin," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 695-717, February.
- Benjamin Lutz & Dominik Kisskalt & Andreas Mayr & Daniel Regulin & Matteo Pantano & Jörg Franke, 2021. "In-situ identification of material batches using machine learning for machining operations," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1485-1495, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mellal, Mohamed Arezki & Zio, Enrico, 2020. "System reliability-redundancy optimization with cold-standby strategy by an enhanced nest cuckoo optimization algorithm," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
- N. A. Fountas & R. Benhadj-Djilali & C. I. Stergiou & N. M. Vaxevanidis, 2019. "An integrated framework for optimizing sculptured surface CNC tool paths based on direct software object evaluation and viral intelligence," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1581-1599, April.
- Neeraj Kumar Bhoi & Harpreet Singh & Saurabh Pratap & Pramod K. Jain, 2022. "Chemical reaction optimization algorithm for machining parameter of abrasive water jet cutting," OPSEARCH, Springer;Operational Research Society of India, vol. 59(1), pages 350-363, March.
- Mohamed Arezki Mellal & Enrico Zio, 2019. "An adaptive cuckoo optimization algorithm for system design optimization under failure dependencies," Journal of Risk and Reliability, , vol. 233(6), pages 1099-1105, December.
- Elango Natarajan & Varadaraju Kaviarasan & Wei Hong Lim & Sew Sun Tiang & S. Parasuraman & Sangeetha Elango, 2020. "Non-dominated sorting modified teaching–learning-based optimization for multi-objective machining of polytetrafluoroethylene (PTFE)," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 911-935, April.
- R. Venkata Rao & Dhiraj P. Rai & J. Balic, 2019. "Multi-objective optimization of abrasive waterjet machining process using Jaya algorithm and PROMETHEE Method," Journal of Intelligent Manufacturing, Springer, vol. 30(5), pages 2101-2127, June.
More about this item
Keywords
Smart machine tool system (SMTS); Cyber-physical manufacturing system (CPMS); Machine tool cyber system (MTCS); Cyber-physical system (CPS) operator; Monitoring; Analysis; Plan; Execution/big data analytics and AI; digital twin (MAPE/BD);All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:31:y:2020:i:8:d:10.1007_s10845-020-01539-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.